Selected Grantee Publications
- Clear All
- 10 results found
- Microbiome
- 2023
- 2021
Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development
Sharpton et al., Zebrafish. 2023.
https://pubmed.ncbi.nlm.nih.gov/38117219/
Standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, the authors presented findings from a 7-month diet test study conducted across three aquatic research facilities: Zebrafish International Resource Center (University of Oregon), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (Texas State University). They compared the effects of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and medaka), and three zebrafish wild-type strains. They reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Supported by ORIP (P40OD011021, R24OD011120, and R24OD010998) and NICHD.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
Assessment of Various Standard Fish Diets on Gut Microbiome of Platyfish Xiphophorus maculatus
Soria et al., Journal of Experimental Zoology Part B. 2023.
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23218
Diet is an important factor affecting experimental reproducibility and data integration across studies. Reference diets for nontraditional animal models are needed to control diet-induced variation. In a study of the dietary impacts on the gut microbiome, researchers found that switching from a custom diet to a zebrafish diet altered the Xiphophorus gut microbiome. Their findings suggest that diets developed specifically for zebrafish can affect gut microbiome composition and might not be optimal for Xiphophorus. Supported by ORIP (R24OD011120, R24OD031467, P40OD011021) and NCI.
The Contribution of Maternal Oral, Vaginal, and Gut Microbiota to the Developing Offspring Gut
Russell et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-40703-7#Ack1
The maturation process of the gut microbiota (GM) is an essential process for life-long health that is defined by the acquisition and colonization of microorganisms in the gut and the subsequent immune system induction that occurs during early life. To address significant knowledge gaps in this area, investigators characterized the neonatal fecal and ileal microbiota of entire litters of mice at multiple pre-weaning time-points. Results indicated that specific-pathogen-free mouse microbiotas undergo a dynamic and somewhat characteristic maturation process, culminating by roughly two to three weeks of age. Prior to that, the neonatal GM is more similar in composition to the maternal oral microbiota, as opposed to the vaginal and fecal microbiotas. Further studies are needed to expand our knowledge regarding the effect of these developmental exposures on host development. Supported by ORIP (U42OD010918, R03OD028259).
Disentangling the Link Between Zebrafish Diet, Gut Microbiome Succession, and Mycobacterium chelonae Infection
Sieler et al., Animal Microbiome. 2023.
https://pubmed.ncbi.nlm.nih.gov/37563644/
Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, the authors sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. They report that diet drives the successional development of the gut microbiome, as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet. Supported by ORIP (R24OD010998) and NIEHS.
A Germ-Free Humanized Mouse Model Shows the Contribution of Resident Microbiota to Human-Specific Pathogen Infection
Wahl et al., Nature Biotechnology. 2023.
https://www.nature.com/articles/s41587-023-01906-5
Germ-free (GF) mice are of limited value in the study of human-specific pathogens because they do not support their replication. In this report, investigators developed a GF humanized mouse model using the bone marrow–liver–thymus platform to provide a robust and flexible in vivo model that can be used to study the role of resident microbiota in human health and disease. They demonstrated that resident microbiota promote viral acquisition and pathogenesis by using two human-specific pathogens, Epstein–Barr virus and HIV. Supported by ORIP (P40OD010995), FIC, NIAID, NCI, and NIDDK.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
Deciphering the Role of Mucosal Immune Responses and the Cervicovaginal Microbiome in Resistance to HIV Infection in HIV-Exposed Seronegative Women
Ponnan et al., Microbiology Spectrum. 2021.
https://journals.asm.org/doi/10.1128/Spectrum.00470-21
Identifying correlates of protection in HIV-exposed seronegative (HESN) individuals requires identification of HIV-specific local immune responses. Researchers performed a comprehensive investigation of the vaginal mucosa and cervicovaginal microbiome in HESN women. They found elevated antiviral cytokines, soluble immunoglobulins, activated NK cells, CXCR5+ CD8+ T cells, and T follicular helper cells in HESN women compared to HIV-unexposed healthy women. They also found greater bacterial diversity and increased abundance of Gardnerella species in the mucosa of HESN women. These findings suggest that the genital tract of HESN women contains innate immune factors, antiviral mediators, and T cell subsets that protect against HIV. Supported by ORIP (P51OD011132) and NIAID.
IL-21 and IFNα Therapy Rescues Terminally Differentiated NK Cells and Limits SIV Reservoir in ART-Treated Macaques
Harper et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23189-7
Nonpathogenic simian immunodeficiency virus (SIV) infections in natural hosts, such as vervet monkeys, are characterized by a lack of gut microbial translocation, robust secondary lymphoid natural killer cell responses, and limited SIV dissemination in lymph node B-cell follicles. Using antiretroviral therapy-treated, SIV-infected rhesus monkeys—a pathogenic model—researchers showed that interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. The correlated reduction of replication-competent SIV in lymph node demonstrates that vervet-like natural killer cell differentiation can be rescued in rhesus monkeys to promote viral clearance. Supported by ORIP (P51OD011132, R24OD010947), NIAID, and NCI.
Tract Pathogen-Mediated Inflammation Through Development of Multimodal Treatment Regimen and Its Impact on SIV Acquisition in Rhesus Macaques
Bochart et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009565
In addition to being premier HIV models, rhesus macaques are models for other infectious diseases and colitis, where background colon health and inflammation may confound results. Starting with the standard specific-pathogen-free (SPF) model, researchers established a gastrointestinal pathogen-free (GPF) colony via multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common endemic pathogens (EPs). This treatment combined with continued pathogen exclusion eliminated common EPs, improved mucosal barriers, and reduced mucosal and systemic inflammation without microbiota disruption. GPF animals challenged with SIV intrarectally demonstrated a more controlled and consistent rate of SIV acquisition, suggesting the value of this model for HIV studies. Supported by ORIP (U42OD023038, P51OD011092), NCI, and NIAID.