Selected Grantee Publications
- Clear All
- 2 results found
- Microbiome
- Microscopy
Failure of Colonization Following Gut Microbiota Transfer Exacerbates DSS-Induced Colitis
Gustafson et al., Gut Microbes. 2025.
https://pubmed.ncbi.nlm.nih.gov/39812347/
Microorganisms that inhabit the gastrointestinal tract, known as the gut microbiome (GM), play a vital role in health and disease. Dysbiosis, the reduced richness of symbiotic commensals in the GM, exacerbates inflammation and increases inflammatory bowel disease (IBD) severity. Researchers used a mouse model for IBD to determine the role of GM composition, richness, and transfer methods on IBD disease severity. A comparison of GM transfer methods demonstrated that co-housing was not as efficient as embryonic transfer and cross-fostering. The GM of the donor and recipient during co-housing determined transfer efficiency. Transfer of a low richness GM to a recipient with high GM richness, followed by dextran sodium sulfate administration to induce IBD, resulted in significant weight loss, greater lesion severity, increased inflammatory response, and higher mortality rates. This study provides evidence regarding the role of GM composition and colonization in IBD modulation. Supported by ORIP (T32OD011126, U42OD010918) and NIGMS.
Integrative Multi-omics Analysis Uncovers Tumor-Immune-Gut Axis Influencing Immunotherapy Outcomes in Ovarian Cancer
Rosario et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39638782
Recurrent ovarian cancer (OC) is the deadliest gynecological malignancy, with a 5-year survival rate of 50% and a median progression-free survival (PFS) of 1.9 to 2.1 months. A trial cohort of 40 patients was treated with a combination of the anti-PD-1 pembrolizumab, the anti–vascular endothelial growth factor bevacizumab, and cyclophosphamide. The investigators conducted a multi-omics analysis—including transcriptomic analysis, digital spatial profiling, 16s-rRNA sequencing, and metabolomics—to understand the underlying mechanisms for the enhanced PFS to a median of 10.2 months and overall response rate of 47.5%. Multi-omics analysis highlighted the formation of tertiary lymphoid structures known to improve responses to immunotherapy, differential microbial patterns, and alterations in the metabolites in three key metabolism pathways that enhanced immune response in patients to produce a durable clinical response. These findings highlight the importance of the tumor microenvironment and the gut microbiome, along with its metabolites, in elevating the efficacy of the cocktail therapy in recurrent OC patients, thereby enhancing their survival and quality of life. Supported by ORIP (S10OD024973) and NCI.