Selected Grantee Publications
- Clear All
- 2 results found
- Microbiome
- T32
Failure of Colonization Following Gut Microbiota Transfer Exacerbates DSS-Induced Colitis
Gustafson et al., Gut Microbes. 2025.
https://pubmed.ncbi.nlm.nih.gov/39812347/
Microorganisms that inhabit the gastrointestinal tract, known as the gut microbiome (GM), play a vital role in health and disease. Dysbiosis, the reduced richness of symbiotic commensals in the GM, exacerbates inflammation and increases inflammatory bowel disease (IBD) severity. Researchers used a mouse model for IBD to determine the role of GM composition, richness, and transfer methods on IBD disease severity. A comparison of GM transfer methods demonstrated that co-housing was not as efficient as embryonic transfer and cross-fostering. The GM of the donor and recipient during co-housing determined transfer efficiency. Transfer of a low richness GM to a recipient with high GM richness, followed by dextran sodium sulfate administration to induce IBD, resulted in significant weight loss, greater lesion severity, increased inflammatory response, and higher mortality rates. This study provides evidence regarding the role of GM composition and colonization in IBD modulation. Supported by ORIP (T32OD011126, U42OD010918) and NIGMS.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.