Selected Grantee Publications
- Clear All
- 3 results found
- Immunology
- Spectrometry
- 2024
SHIV Remission in Macaques With Early Treatment Initiation and Ultra Long-Lasting Antiviral Activity
Daly et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39632836
Antiretroviral therapy (ART) suppresses HIV and simian immunodeficiency virus (SIV) replication but cannot eliminate reservoirs of long-lived infected cells that enable rebound after discontinuation of ART. These researchers hypothesized that ART designed to have long-lasting activity and penetrate tissue reservoirs would be optimized against HIV or SIV remission. Macaques were treated with a four-drug regimen (i.e., oral emtricitabine/tenofovir alafenamide and long-acting cabotegravir/rilpivirine) designed to improve dosing of immune cells, with or without the immune-activating drug vesatolimod (VES), after the onset of SIV viremia. The animals were monitored for 1 year with treatment and 2 additional years following treatment discontinuation. Durable viral suppression was observed in all animals treated with the optimized ART regimen with or without VES. These results will inform novel HIV treatment regimens with long-lasting antiviral activity in humans. Supported by ORIP (P40OD028116).
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.