Selected Grantee Publications
- Clear All
- 16 results found
- Immunology
- Genetics
- 2022
Long-Term Evolutionary Adaptation of SIVcpz toward HIV-1 Using a Humanized Mouse Model
Schmitt et al., Journal of Medical Primatology. 2022.
https://www.doi.org/10.1111/jmp.12616
Chimpanzee-derived simian immunodeficiency viruses (SIVcpz) are thought to have evolved into the highly pathogenic HIV-1 Group M, but the genetic adaptations required for SIV progenitor viruses to become pathogenic and established as HIVs in the human population have remained unclear. Using humanized mice of both sexes, researchers mimicked the evolution of SIVcpz into HIV-1 Group M through serial passaging. After four generations, the researchers observed increased initial viral load, increased CD4+ T cell decline, and nonsynonymous substitutions. Overall, these data indicate increased viral fitness and pathogenicity. This work also demonstrates the utility of humanized mice in recreating the adaptive pressures necessary for the evolution of SIVcpz into HIV-1. Supported by ORIP (P51OD011104, P51OD011106), NCATS, and NIAID.
System-Wide Identification of Myeloid Markers of TB Disease and HIV-Induced Reactivation in the Macaque Model of Mtb Infection and Mtb/SIV Co-Infection
Gough et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.777733
HIV is known to catalyze the reactivation of latent tuberculosis (TB) infection. The investigators characterized Mycobacterium tuberculosis (Mtb) and simian immunodeficiency virus (SIV) coinfection using a rhesus macaque model of both sexes, with a focus on pathways relevant to myeloid origin cells (e.g., macrophages). They identified gene signatures of host disease state and progression, as well as clustering algorithms for differentiation between host disease states and relationships among genes. The gene signatures were associated with pathways relevant to apoptosis, adenosine triphosphate production, phagocytosis, cell migration, and type I interferon, which are related to macrophage function. Collectively, these findings suggest that novel macrophage functions influence Mtb infection both with and without SIV coinfection. Supported by ORIP (P51OD011104, P51OD011103, U42OD010442) and NIAID.
Wastewater Sequencing Reveals Early Cryptic SARS-CoV-2 Variant Transmission
Karthikeyan et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-05049-6
The investigators explored the use of SARS-CoV-2 RNA concentration in wastewater as a practical approach to estimate community prevalence of COVID-19, detect emerging variants, and track regional infection dynamics. Two obstacles must be overcome to leverage wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. The investigators developed and deployed improved virus concentration protocols and deconvolution software to fully resolve multiple virus strains from wastewater. Results indicate that emerging variants of concern were detected up to 14 days earlier in wastewater samples, and multiple instances of virus spread that were not captured by clinical genomic surveillance were identified by wastewater-based genomic surveillance. The study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission. The work suggests a critical, urgently needed methodology for early detection of emerging variants and early public health interventions. Supported by ORIP (S10OD026929), and NIAID.
Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel Insights in Gill Development
Annona et al., Proceedings of the Royal Society B. 2022.
https://www.doi.org/10.1098/rspb.2022.0667
Nitric oxide (NO) plays essential roles in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Knowledge of NO synthases (NOS) is substantial, but the origin of nos gene orthologues in fishes, with respect to tetrapods, remains largely unknown. The recent identification of nos3 in the spotted gar, considered lost in this lineage, prompted the authors to explore nos gene evolution. Here, they report that nos2 experienced several lineage-specific gene duplications and losses. Additionally, nos3 was found to be lost independently in two teleost lineages, Elopomorpha and Clupeocephala. Further, the expression of at least one nos paralogue in gills of developing shark, bichir, sturgeon, and gar, but not in gills of lamprey, suggests nos expression in the gill might have arisen in the last common ancestor of gnathostomes. These results provide a framework for further research on the role of nos genes. Supported by ORIP (P40OD019794, R01OD011116).
Stromal P53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner
Wu et al., Molecular Cancer Research. 2022.
https://www.doi.org/10.1158/1541-7786.MCR-21-0960
Loss of stromal p53 function drives tumor progression in breast cancer, but the exact mechanisms have been relatively unexplored. Using mouse models, researchers demonstrated that loss of cancer-associated fibroblast (CAF) p53 enhances carcinoma formation driven by oncogenic KRAS G12D, but not ERBB2, in mammary epithelia. These results corresponded with increased tumor cell proliferation and DNA damage, as well as decreased apoptosis, in the KRAS G12D model. Furthermore, a gene cluster associated with CAF p53 deficiency was found to associate negatively with survival in microarray and heat map analyses. These data indicate that stromal p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately affects patient survival. Supported by ORIP (K01OD026527) and NCI.
Sunitinib Inhibits STAT3 Phosphorylation in Cardiac Muscle and Prevents Cardiomyopathy in the mdx Mouse Model of Duchenne Muscular Dystrophy
Oliveira-Santos et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac042
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy, affecting about 1 in 5,000 boys worldwide. DMD is a fatal X-linked genetic disorder that results from mutations in the dystrophin gene and leads to progressive muscular degeneration. Individuals with DMD often die at a young age from respiratory or heart failure. To date, few studies have examined the basis of cardiac failure associated with DMD, and no effective U.S. Food and Drug Administration (FDA)–approved treatment options are available. Using a mouse model of both sexes, researchers characterized the effectiveness of sunitinib, an FDA-approved small-molecule drug, in preventing DMD-related cardiomyopathy. The treatment reduced STAT3 activation in cardiac muscle and prevented cardiomyopathy disease progression. Inhibition of STAT3 activation in cardiac muscle can reduce inflammation and fibrosis and prevent heart failure. These findings demonstrate sunitinib’s potential as a novel treatment option for skeletal and cardiac muscle dysfunction in patients with DMD. Supported by ORIP (R42OD030543).
Allogeneic MHC‑Matched T‑Cell Receptor Α/Β‑Depleted Bone Marrow Transplants in SHIV‑Infected, ART‑Suppressed Mauritian Cynomolgus Macaques
Weinfurter et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-16306-z
Allogeneic hematopoietic stem cell transplants are effective in reducing HIV reservoirs following antiretroviral therapy (ART). A better understanding of this mechanism could enable the development of safer and more efficacious HIV treatment regimens. In this study, the researchers used a Mauritian cynomolgus macaque model to study the effects of allogeneic major histocompatibility complex–matched α/β T cell–depleted bone marrow cell transplantation following infection with simian–human immunodeficiency virus (SHIV). The macaques began ART 6 to 16 weeks post-infection. In three of the four macaques, SHIV DNA was undetectable in blood but persisted in other tissues. These results suggest that extended ART likely is needed to eradicate the HIV reservoir following transplantation. In future studies, full donor engraftment should be balanced with suppression of graft-versus-host disease. Supported by ORIP (P51OD011106, R24OD021322), and NCI.
Innate Immune Regulation in HIV Latency Models
Olson et al., Retrovirology. 2022.
https://www.doi.org/10.1186/s12977-022-00599-z
Researchers are interested in developing therapeutic approaches to target latent HIV reservoirs, which are unaffected by antiretroviral therapy. Previous studies suggest that HIV latency might be related to viral RNA sensing, interferon (IFN) signaling, and IFN-stimulated gene (ISG) activation. In this study, the researchers evaluated responses to stimulation by retinoic acid–inducible gene I agonists and IFN in multiple CD4+ T cell line models for HIV latency. The models represented various aspects of latent infection and viral control. Several of the cell lines demonstrated reduced ISG induction, suggesting that long-term latency might be related to dysregulation of the downstream IFN response. These effects likely reflect transcriptional changes occurring within a core set of ISGs and altering IFN responses. Additional studies could provide insight into the functions of these ISGs in HIV latency. Supported by ORIP (P51OD010425), NCATS, and NIAID.
Substitutions in Nef That Uncouple Tetherin and SERINC5 Antagonism Impair Simian Immunodeficiency Virus Replication in Primary Rhesus Macaque Lymphocytes
Janaka et al., Journal of Virology. 2022.
https://www.doi.org/10.1128/jvi.00176-22
Tetherin inhibits the release of certain enveloped viruses from infected host cells. Most simian immunodeficiency viruses (SIVs) use Nef, a nonenzymatic accessory protein, to overcome this restriction. Nef also has been shown to enhance viral infectivity by preventing the incorporation of SERINC5 into virions. Researchers demonstrated previously that tetherin antagonism is necessary for efficient SIV replication in rhesus macaques. They explored this effect by defining substitutions within Nef that distinguish tetherin and SERINC5 antagonism. The researchers engineered an SIV molecular clone with substitutions that uncouple relevant Nef functions. This clone can be used to further study the effects of tetherin and adaptive immune responses. Supported by ORIP (P51OD011106) and NIAID.
A Cellular Trafficking Signal in the SIV Envelope Protein Cytoplasmic Domain Is Strongly Selected for in Pathogenic Infection
Lawrence et al., PLOS Pathogens. 2022.
https://www.doi.org/10.1371/journal.ppat.1010507
Envelope glycoproteins within the cytoplasmic domain of HIV and simian immunodeficiency virus (SIV) include a tyrosine-based motif that mediates endocytosis and polarized sorting in infected cells. Mutation of this tracking signal has been shown to lead to suppressed viral replication and failed systemic immune activation, but the mechanism has not been explored fully. Using rhesus and pigtail macaque models, the researchers demonstrated that molecular clones containing the mutations reconstitute signals for both endocytosis and polarized sorting. Their findings suggest strong selection pressure for these processes during pathogenic HIV and SIV infection. Supported by ORIP (P51OD011104), NCI, and NIAID.