Selected Grantee Publications
- Clear All
- 11 results found
- Immunology
- U42
- Microscopy
Failure of Colonization Following Gut Microbiota Transfer Exacerbates DSS-Induced Colitis
Gustafson et al., Gut Microbes. 2025.
https://pubmed.ncbi.nlm.nih.gov/39812347/
Microorganisms that inhabit the gastrointestinal tract, known as the gut microbiome (GM), play a vital role in health and disease. Dysbiosis, the reduced richness of symbiotic commensals in the GM, exacerbates inflammation and increases inflammatory bowel disease (IBD) severity. Researchers used a mouse model for IBD to determine the role of GM composition, richness, and transfer methods on IBD disease severity. A comparison of GM transfer methods demonstrated that co-housing was not as efficient as embryonic transfer and cross-fostering. The GM of the donor and recipient during co-housing determined transfer efficiency. Transfer of a low richness GM to a recipient with high GM richness, followed by dextran sodium sulfate administration to induce IBD, resulted in significant weight loss, greater lesion severity, increased inflammatory response, and higher mortality rates. This study provides evidence regarding the role of GM composition and colonization in IBD modulation. Supported by ORIP (T32OD011126, U42OD010918) and NIGMS.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
Fetal Bone Engraftment Reconstitutes the Immune System in Pigs With Severe Combined Immunodeficiency
Monarch et al., Lab Animal. 2024.
https://pubmed.ncbi.nlm.nih.gov/39289566/
A valuable preclinical model for studying immune-related pathologies is the severe combined immunodeficiency (SCID) pig through modification of recombination activating gene 2 (RAG2) and interleukin-2 receptor-γ (IL2RG). RAG2/IL2RG double knockout SCID pigs are hard to maintain for breeding and long-term studies because their life span is 8 weeks or less. The researchers investigated fetal allograft transplantation derived from immunocompetent pigs as a strategy for reconstituting the immune system of SCID pigs and promoting survival. Following fetal allograft, SCID pigs demonstrated increased levels of lymphocytes. SCID pigs that received the fetal allograft demonstrated improved body condition and extended life span compared with nonrecipient SCID littermates. This study demonstrates the potential use of fetal allograft transplantation to extend the life span of SCID pigs to breeding age to reduce the resources used to maintain this model for biomedical research. Supported by ORIP (U42OD011140, R21OD027062).
Comparison of the Immunogenicity of mRNA-Encoded and Protein HIV-1 Env-ferritin Nanoparticle Designs
Mu et al., Journal of Virology. 2024.
https://journals.asm.org/doi/10.1128/jvi.00137-24
Inducing broadly neutralizing antibodies (bNAbs) against HIV-1 remains a challenge because of immune system limitations. This study compared the immunogenicity of mRNA-encoded membrane-bound envelope (Env) gp160 to HIV-1 Env-ferritin nanoparticle (NP) technology in inducing anti-HIV-1 bNAbs. Membrane-bound mRNA encoding gp160 was more immunogenic than the Env-ferritin NP design in DH270 UCA KI mice, but at lower doses. These results suggest further analysis of mRNA design expression and low-dose immunogenicity studies are necessary for anti-HIV-1 bNAbs. Supported by ORIP (P40OD012217, U42OD021458) and NIAID.
Anti–PD-1 Chimeric Antigen Receptor T Cells Efficiently Target SIV-Infected CD4+ T Cells in Germinal Centers
Eichholtz et al., The Journal of Clinical Investigation. 2024.
https://pubmed.ncbi.nlm.nih.gov/38557496/
Researchers conducted adoptive transfer of anti–programmed cell death protein 1 (PD-1) chimeric antigen receptor (CAR) T cells in simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes on antiretroviral therapy (ART). In some macaques, anti–PD-1 CAR T cells expanded and persisted concomitant with the depletion of PD-1+ memory T cells—including lymph node CD4+ follicular helper T cells—associated with depletion of SIV RNA from the germinal center. Following CAR T infusion and ART interruption, SIV replication increased in extrafollicular portions of lymph nodes, plasma viremia was higher, and disease progression accelerated, indicating that anti–PD-1 CAR T cells depleted PD-1+ T cells and eradicated SIV from this immunological sanctuary. Supported by ORIP (U42OD011123, U42OD010426, P51OD010425, P51OD011092), NCI, NIAID, and NIDDK.
Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer
Smith et al., Molecular Therapy. 2024.
https://www.sciencedirect.com/science/article/pii/S1525001624003058?via%3Dihub=
Recombinant adeno-associated viral (AAV) vectors have emerged as the leading platform for therapeutic gene transfer, but systemic dosing of AAV vectors poses potential risk of adverse side effects, including complement activation triggered by anti-capsid immunity. In this study, investigators discovered an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. They engineered a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. Antisera from animals treated with IceMG show decreased ability to neutralize AAV and activate complement. These studies have implications for improving the safety of AAV gene therapies and offer broader applications, including for organ transplantation and autoimmune diseases. Supported by ORIP (P51OD011107, U42OD027094), NHLBI, and NIAID.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
In Vitro and In Vivo Functions of SARS-CoV-2 Infection-Enhancing and Neutralizing Antibodies
Li et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.06.021
Antibody-dependent enhancement of infection is a concern for clinical use of antibodies. Researchers isolated neutralizing antibodies against the receptor-binding domain (RBD) or N-terminal domain (NTD) of SARS-CoV-2 spike from COVID-19 patients. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific binding modes. RBD and NTD antibodies mediated both neutralization and infection enhancement in vitro. However, infusion of these antibodies into mice or macaques resulted in suppression of virus replication, demonstrating that antibody-enhanced infection in vitro does not necessarily predict enhanced infection in vivo. RBD-neutralizing antibodies having cross-reactivity against coronaviruses were protective against SARS-CoV-2, the most potent of which was DH1047. Supported by ORIP (P40OD012217, U42OD021458, S10OD018164), NIAID, NCI, NIGMS, and NIH Common Fund.
Neutralizing Antibody Vaccine for Pandemic and Pre-Emergent Coronaviruses
Saunders et al., Nature. 2021.
https://doi.org/10.1038/s41586-021-03594-0
SARS-CoV-2 is a new member of the betacoronavirus (beta-CoV) genus, which also includes two common mild beta-CoVs and the life-threatening SARS-CoV-1 and MERS-CoV. Vaccines that elicit protective immunity against SARS-CoV-2 and beta-CoVs that circulate in animals could prevent future pandemics. Researchers designed a novel 24-mer SARS-CoV-2 receptor binding domain-sortase A conjugated nanoparticle vaccine (RBD-scNP). Investigators demonstrated that the immunization of macaques with RBD-scNP, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV, and multiple SARS-CoV-2 variants of concern. This pioneering approach serves as a multimeric protein platform for the further development of generalized anti-beta-CoV vaccines. Supported by ORIP (U42OD021458), NIAID, and NCI.