Selected Grantee Publications
- Clear All
- 151 results found
- Immunology
- P51
A Combined Adjuvant Approach Primes Robust Germinal Center Responses and Humoral Immunity in Non-Human Primates
Phung et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625619/
Protein antigens require adjuvants for high immunogenicity, and delivery kinetics are a critical component of rational HIV vaccine design. Investigators employed a combined adjuvant approach (i.e., short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide, plus saponin/MPLA nanoparticles) with slow antigen delivery and potent immune-stimulating complexes in rhesus macaques of both sexes. They reported that pSer-modified antigen shifts immunodominance to allow subdominant epitope-targeting of rare B cells. These findings indicate that a combined adjuvant approach can augment humoral immunity by modulating immunodominance, and this work can be applied for the development of clinical therapeutics. Supported by ORIP (P51OD011104) and NIAID.
Intravenous Bacille Calmette–Guérin Vaccination Protects Simian Immunodeficiency Virus–Infected Macaques From Tuberculosis
Larson et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627825/
People with HIV are susceptible to developing tuberculosis and experiencing associated complications. Researchers assessed the safety, immunogenicity, and efficacy of intravenous Bacille Calmette–Guérin vaccination in male and female cynomolgus macaques coinfected with simian immunodeficiency virus (SIV) and Mycobacterium tuberculosis. The vaccine conferred protection in all vaccinated SIV-naive animals and in 9 of 12 vaccinated SIV-infected animals. These data suggest that the vaccine is immunogenic and efficacious in SIV-infected animals. Overall, this work establishes a model to identify correlates of protection, and these findings can be applied in future studies to develop effective vaccine regimens for people with HIV. Supported by ORIP (P51OD011106, R01OD01033539) and NIAID.
High Throughput Analysis of B Cell Dynamics and Neutralizing Antibody Development During Immunization With a Novel Clade C HIV-1 Envelope
Mopuri et al., PLoS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627474/
Broadly neutralizing antibodies from chronic infection are an area of interest for HIV-1 vaccine development. Using male and female rhesus macaques, a team of researchers conducted a high-throughput longitudinal study to determine how B cells respond to vaccines expressing different HIV-1 Env immunogens. In most animals, the B cells failed to achieve neutralizing activity. One animal, however, developed neutralizing antibodies against the vaccine strain. These data suggest that early elicitation might favor the induction of neutralizing antibodies against HIV-1 Env. This work offers new insights for autologous neutralizing antibody lineages. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS
Enhanced IL-17 Producing and Maintained Cytolytic Effector Functions of Gut Mucosal CD161+ CD8+ T Cells in SIV-Infected Rhesus Macaques
Thirugnanam et al., Viruses. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535321/
HIV infection is associated with the depletion of CD161-expressing CD4+ Th17 cells, but the effects on other IL-17–producing T cell subsets are not understood fully. Researchers characterized the functions of non-invariant CD161-expressing CD8+ T cell subpopulations in peripheral blood and mucosal tissues of rhesus macaques (sex not specified) during chronic simian immunodeficiency virus (SIV) infection. They demonstrated that cell frequencies and function were unaffected by infection, but enhanced IL-17 production capacity and sustained Th1-type and cytolytic functions were observed. This work suggests that CD161-expressing CD8+ T cells might have important functions in gut mucosal immunity during chronic HIV infection. Supported by ORIP (P51OD011104, S10OD026800), NIAID, NIDDK, and NIMH.
Spontaneous HIV Expression During Suppressive ART Is Associated With the Magnitude and Function of HIV-Specific CD4+ and CD8+ T Cells
Dubé et al., Cell Host Microbe. 2023.
https://linkinghub.elsevier.com/retrieve/pii/S1931-3128(23)00331-1
CD4+ and CD8+ T cells are essential in the control of simian immunodeficiency virus and HIV infections, but the mechanisms are not understood fully. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization, researchers quantified and phenotyped viral reservoirs spontaneously expressing viral RNA and the p24 protein in primary clinical samples from men. They reported associations between active reservoirs and HIV-specific CD4+ and CD8+ T cells, and the active reservoirs were largely dominated by defective proviruses. Their findings suggest that viral reservoirs maintain HIV-specific responses during suppressive antiretroviral therapy (ART), and low-level viral gene expression by spontaneous reservoirs is sufficient to maintain anti-HIV adaptive immunity. Supported by ORIP (P51OD011092) and NIAID.
Downregulation of CCR5 on Brain Perivascular Macrophages in Simian Immunodeficiency Virus–Infected Rhesus Macaques
Bollimpelli et al., Nature Communications. 2023.
https://www.doi.org/10.1038/s41467-023-40430-7
Researchers have been exploring multiple strategies to develop an HIV vaccine. In this study, the investigators determined the immunogenicity and efficacy of intradermal and intramuscular routes of modified vaccinia Ankara (MVA) vaccination in female rhesus macaques. They found that both routes of MVA vaccination enabled control of viral replication, but only the intradermal vaccination was effective in protection against viral acquisition. Their findings suggest that the intradermal MVA vaccinations provide protection by modulating the innate and T helper responses. Taken together, this work underscores the importance of testing the influence of the route of immunization for HIV vaccines in humans. Supported by ORIP (P51OD011132, R24OD010976) and NIAID.
Antiretroviral Therapy Ameliorates Simian Immunodeficiency Virus–Associated Myocardial Inflammation by Dampening Interferon Signaling and Pathogen Response in the Heart
Robinson et al., The Journal of Infectious Diseases. 2023.
https://doi.org/10.1093/infdis/jiad105
HIV is associated with increased risk of cardiovascular disease, but the underlying mechanisms are not fully understood. Using RNA sequencing, investigators characterized the effects of simian immunodeficiency virus (SIV) infection on the hearts of male rhesus macaques. They demonstrated that SIV infection drives a canonical antiviral response in the heart, as well as dysregulation of genes involved in fatty acid shuttling and metabolism. Their findings suggest that antiretroviral therapy helps mitigate immune activation during viremic conditions and plays a cardioprotective role. Future studies are needed to assess the long-term effects of these dynamics. Supported by ORIP (P51OD011104), NIAID, NIMH, and NINDS.
Allogeneic Immunity Clears Latent Virus Following Allogeneic Stem Cell Transplantation in SIV-Infected ART-Suppressed Macaques
Wu et al., Immunity. 2023.
https://doi.org/10.1016/j.immuni.2023.04.019
Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been documented as curative for HIV, but the mechanisms are not yet known. Using Mauritian cynomolgus macaques of both sexes, researchers performed reduced-intensity alloHSCT experiments to define the individual contributions of allogeneic immunity and CCR5 deficiency to an alloHSCT-mediated HIV cure. They reported that allogeneic immunity was the major driver of reservoir clearance, mediating graft-versus-reservoir effects in HIV infection. Their results also point to a protective mechanism for CCR5 deficiency early during engraftment. Future efforts could focus on harnessing the beneficial effects of allogeneic immunity while avoiding graft-versus-host disease. Supported by ORIP (P51OD011092) and NIAID.
Osteopontin Is an Integral Mediator of Cardiac Interstitial Fibrosis in Models of Human Immunodeficiency Virus Infection
Robinson et al., The Journal of Infectious Diseases. 2023.
https://www.doi.org/10.1093/infdis/jiad149
HIV infection is associated with increased risk of cardiovascular disease. Plasma osteopontin (Opn) is correlated with cardiac pathology, but more work is needed to understand the underlying mechanisms driving cardiac fibrosis. Researchers explored this topic using mouse embryonic fibroblasts, male macaques, and humanized mice of both sexes. They reported the accumulation of Opn in the heart with simian immunodeficiency virus infection. Systemic inhibition of Opn can prevent HIV-associated interstitial fibrosis in the left ventricle. These findings suggest that Opn could be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV. Supported by ORIP (P51OD011104), NIAID, NHLBI, NIMH, and NINDS.