Selected Grantee Publications
- Clear All
- 151 results found
- Immunology
- P51
Estimation of the In Vivo Neutralization Potency of eCD4Ig and Conditions for AAV-Mediated Production for SHIV Long-Term Remission
Goyal et al., Science Advances. 2022.
https://www.doi.org/10.1126/sciadv.abj5666
The engineered protein eCD4Ig, a synthetic antibody-like inhibitor designed to limit HIV entry into cells, shows promise as an approach to achieve HIV remission without antiretroviral therapy. Researchers used mathematical modeling to characterize in vivo antiviral neutralization of eCD4Ig, as well as possible antibody-dependent cell-mediated cytotoxicity effects, in rhesus macaques infected with simian–human immunodeficiency virus (SHIV) (sex not specified). The research team modeled SHIV and pharmacokinetics dynamics and projected the levels of eCD4Ig needed with a viral vector production approach to suppress SHIV viremia. The data suggest that endogenous, continuous expression of eCD4Ig could overcome the diminishing effects of antidrug antibodies and allow long-term remission of SHIV viremia in nonhuman primates. Supported by ORIP (P51OD011132) and NIAID.
Protection from SARS-CoV-2 Delta One Year After mRNA-1273 Vaccination in Rhesus Macaques Coincides with Anamnestic Antibody Response in the Lung
Gagne et al., Cell. 2022.
https://www.sciencedirect.com/science/article/pii/S0092867421014057?via%3Dihub=
Efficacy of the vaccine mRNA-1273 against SARS-CoV-2 Delta decreases with time, yet there are limited data on how durability of immune responses affects protection. Researchers immunized male rhesus macaques with mRNA-1273 and challenged them with Delta one year later. Serum neutralizing antibody responses to Delta and protection in upper airway were low one year after mRNA-1273 vaccination. However, mRNA-1273 provided durable protection against Delta in the lower airway and against severe lung disease one year after vaccination, likely through anamnestic induction of antibody responses in the lung. These findings highlight the importance of booster shots for sustained upper and lower airway protection. Supported by ORIP (P51OD011132) and NIAID.
Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation
Eerhart et al., Transplantation. 2022.
Investigators evaluated the efficacy of a high-dose recombinant human C1 esterase inhibitor (rhC1INH) in preventing delayed graft function (DGF) in a rhesus macaque (RM) model for kidney transplantation after brain death and prolonged cold ischemia. The majority (4 of 5) of vehicle-treated recipients developed DGF, whereas DGF was observed in only 1 of 8 rhC1INH-treated recipients. RMs treated with rhC1INH also had faster creatine recovery, superior urinary output, and reduced biomarkers of allograft injury for the first week. The results suggest high-dose C1INH treatment in transplant recipients is an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes. Supported by ORIP (P51OD011106), NIAID, and NIDDK.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
The Pigtail Macaque (Macaca nemestrina) Model of COVID-19 Reproduces Diverse Clinical Outcomes and Reveals New and Complex Signatures of Disease
Melton et al., PLOS Pathogens. 2021.
https://pubmed.ncbi.nlm.nih.gov/34929014/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
Antiretroviral Therapy Timing Impacts Latent Tuberculosis Infection Reactivation in a Tuberculosis/Simian Immunodeficiency Virus Coinfection Model
Sharan et al., Journal of Clinical Investigation. 2021.
https://pubmed.ncbi.nlm.nih.gov/34855621/
In the rhesus macaque model for Mycobacterium tuberculosis plus simian immunodeficiency virus (SIV) co-infection, chronic immune activation rather than depletion of CD4+ T cells correlates with reactivation of latent tuberculosis infection (LTBI). Researchers administered combined antiretroviral therapy (cART) at 2 weeks post-SIV co-infection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented LTBI compared to cART initiated at 4 weeks post-SIV. Earlier initiation of cART enhanced survival led to better control of viral replication and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. Supported by ORIP (K01OD031898, P51OD011133, P51OD011132, S10OD028653) and NIAID.
Monoclonal Antibodies Protect Aged Rhesus Macaques From SARS-CoV-2-Induced Immune Activation and Neuroinflammation
Verma et al., Cell Reports. 2021.
https://www.sciencedirect.com/science/article/pii/S2211124721014157?via%3Dihub%C2%A0=
In aged diabetic female rhesus macaques, prophylactic administration of neutralizing monoclonal antibodies (mAbs) effectively limits SARS-CoV-2 replication in both the upper and lower respiratory tract, and decreases immune activation, including reducing interferon-induced chemokines and limiting effector CD4 T cell influx into the cerebrospinal fluid. These protective mechanisms took place in the areas of the body targeted by the virus and may prevent adverse inflammatory consequences of SARS-CoV-2 infection in high-risk populations. Supported by ORIP (P51OD011107), NIAID, and NIA.
Deciphering the Role of Mucosal Immune Responses and the Cervicovaginal Microbiome in Resistance to HIV Infection in HIV-Exposed Seronegative Women
Ponnan et al., Microbiology Spectrum. 2021.
https://journals.asm.org/doi/10.1128/Spectrum.00470-21
Identifying correlates of protection in HIV-exposed seronegative (HESN) individuals requires identification of HIV-specific local immune responses. Researchers performed a comprehensive investigation of the vaginal mucosa and cervicovaginal microbiome in HESN women. They found elevated antiviral cytokines, soluble immunoglobulins, activated NK cells, CXCR5+ CD8+ T cells, and T follicular helper cells in HESN women compared to HIV-unexposed healthy women. They also found greater bacterial diversity and increased abundance of Gardnerella species in the mucosa of HESN women. These findings suggest that the genital tract of HESN women contains innate immune factors, antiviral mediators, and T cell subsets that protect against HIV. Supported by ORIP (P51OD011132) and NIAID.
CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques
Sarkar et al., Frontiers in Immunology. 2021.
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757811/full
Researchers investigated the humoral response in vaccinated rhesus macaques with CD4+ T cell depletion, using the VC10014 DNA protein co-immunization vaccine platform (with gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject). Both CD4+-depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. Thus, primates generate HIV neutralizing antibodies in the absence of robust CD4+ T cell help, which has important implications for vaccine development. Supported by ORIP (P51OD011092, P40OD028116, U42OD023038, U42OD010426), NIAID, and NIDCR.