Selected Grantee Publications
- Clear All
- 312 results found
- Immunology
- Stem Cells/Regenerative Medicine
In-Depth Virological and Immunological Characterization of HIV-1 Cure after CCR5A32/A32 Allogeneic Hematopoietic Stem Cell Transplantation
Jensen et al., Nature Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/36807684/
Evidence suggests that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure HIV-1, but the immunological and virological correlates are unknown. Investigators performed a longitudinal virological and immunological analysis of the peripheral blood and tissue compartments of a 53-year-old male patient more than 9 years after CCR5Δ32/Δ32 allogeneic HSCT and 48 months after analytical treatment interruption. Sporadic traces of HIV-1 DNA were detected in peripheral T cell subsets and tissue-derived samples, but repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice of both sexes did not reveal replication-competent virus. This case provides new insights that could guide future cure strategies. Supported by ORIP (P51OD011092) and NIAID.
Cannabinoids Modulate the Microbiota–Gut–Brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis while Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels
McDew-White et al., Journal of Neuroinflammation. 2023.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02729-6
Chronic neuroinflammation is thought to be a significant contributor to HIV-associated neurocognitive disorders. Using rhesus macaques of both sexes, researchers investigated the effects of simian immunodeficiency virus (SIV) infection on the microbiota–gut–brain axis (MGBA), as well as the use of low-dose cannabinoids to reverse MGBA dysregulation. They reported that tetrahydrocannabinol reduced neuroinflammation and dysbiosis and increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid, and indole-3-propionate levels. This study offers a potential strategy to promote brain health in people with HIV. Supported by ORIP (P51OD011104, P51OD011103), NIAID, and NIDA.
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
Assessment of Anti-CD20 Antibody Pre-Treatment for Augmentation of CAR-T Cell Therapy in SIV-Infected Rhesus Macaques
Pampusch et al., Frontiers in Immunology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941136/
Chronic HIV replication occurs primarily within lymphoid follicles, and investigators hypothesized that temporary disruption of these follicles would create space for chimeric antigen receptor (CAR) T cell engraftment and lead to increased abundance and persistence of CAR T cells. They evaluated CAR T cell abundance and persistence in rhesus macaques of both sexes following simian immunodeficiency virus (SIV) infection and antiretroviral therapy suppression. Their results suggest that CAR T cells expanded to a greater extent in the depleted and CAR T cell–treated animals. Further studies are needed to evaluate strategies for engraftment and the persistence of HIV-specific CAR T cells. Supported by ORIP (P51OD011106, P51RR000167), NIAID, and NIDA.
SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128
Kopcho et al., Viruses. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059597/
MicroRNAs (miRNAs) are thought to be involved in HIV pathogenesis, but the effect of HIV on the compartmentalization of miRNAs within extracellular particles is unclear. Researchers sequenced the small RNA population of paired EVs and ECs from male rhesus macaques. They showed that extracellular miRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid‑based carriers, with a significant proportion associated with ECs. Further, simian immunodeficiency virus (SIV) infection altered the miRNAome profile of EVs and revealed miR‑128‑3p as a potential target of infection. This work suggests that EV‑ and EC‑associated miRNAs potentially could serve as biomarkers for various diseases. Supported by ORIP (P51OD011104, P51OD011133), NIAID, and NIDA.
Prolonged Experimental CD4+ T-Cell Depletion Does Not Cause Disease Progression In SIV-Infected African Green Monkeys
Le Hingrat et al., Nature Communications. 2023.
https://www.nature.com/articles/s41467-023-36379-2
Chronically simian immunodeficiency virus (SIV)–infected African green monkeys (AGMs) partially recover mucosal CD4+ T cells, maintain gut integrity, and do not progress to AIDS. Investigators assessed the impact of prolonged, antibody-mediated CD4+ T cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T cells and more than 90% of mucosal CD4+ T cells were depleted. Plasma viral loads and cell-associated viral RNA in tissues were lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintained gut integrity, controlled immune activation, and did not progress to AIDS. Therefore, CD4+ T cell depletion is not a determinant of SIV-related gut dysfunction when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T cell restoration in SIV-infected AGMs. Supported by ORIP (P40OD028116), NIAID, NIDDK, and NHLBI.
CD8+ Lymphocytes Do Not Impact SIV Reservoir Establishment under ART
Statzu et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894752/
The HIV-1 latent reservoir has been shown to persist following antiretroviral therapy (ART), but the mechanisms underlying the establishment and maintenance of the reservoir are not fully understood. Using rhesus macaques of both sexes, investigators examined the effects of CD8+ T cells on formation of the latent reservoir with simian immunodeficiency virus (SIV) infection. They found that CD8+ T cell depletion resulted in slower decline of viremia but did not change the frequency of infected CD4+ T cells in the blood or lymph nodes. Additionally, the size of the persistent reservoir was unchanged. These findings suggest that the viral reservoir is established largely independent of SIV-specific cytotoxic T lymphocyte control. Supported by ORIP (P51OD011132), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
Production and Characterization of Monoclonal Antibodies to Xenopus Proteins
Horr et al., Development. 2023.
https://pubmed.ncbi.nlm.nih.gov/36789951/
Monoclonal antibodies are powerful and versatile tools that enable the study of proteins in diverse contexts. They are often utilized to assist with identification of subcellular localization and characterization of the function of target proteins of interest. However, because there can be considerable sequence diversity between orthologous proteins in Xenopus and mammals, antibodies produced against mouse or human proteins often do not recognize Xenopus counterparts. To address this issue, the authors refined existing mouse monoclonal antibody production protocols to generate antibodies against Xenopus proteins of interest. Here, they describe several approaches for the generation of useful mouse anti-Xenopus antibodies to multiple Xenopus proteins and their validation in various experimental approaches. Supported by ORIP (R24OD021485, S10OD010645) and NIDCR.
Chronic TREM2 Activation Exacerbates Aβ-Associated Tau Seeding and Spreading
Jain et al., Journal of Experimental Medicine. 2023.
Using a mouse model for amyloidosis in which Alzheimer’s Disease (AD)–associated tau is injected into the brain to induce amyloid β (Aβ)–dependent tau seeding/spreading, investigators found that chronic administration of an activating triggering receptor expressed on myeloid cells 2 (TREM2) antibody increases microglial activation of dystrophic neurites surrounding Aβ plaques (NP) but increases NP-tau pathology and neuritic dystrophy without altering Aβ plaque burden. These data suggest that sustained microglial activation through TREM2 that does not result in strong myeloid removal might exacerbate Aβ-induced tau pathology, which could have important clinical implications. Supported by ORIP (S10OD021629) and NIA.
A Deep Learning Platform to Assess Drug Proarrhythmia Risk
Serrano et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/pii/S1934590922004866?via%3Dihub=
Investigators trained a convolutional neural network (CNN) classifier to learn and ultimately identify features of in vitro action potential recordings of human induced pluripotent stem cell (iPSC)–derived cardiomyocytes (hiPSC-CMs) that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia. The risk profiles of the test drugs were similar across hiPSC-CMs derived from different healthy donors. In addition, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high‑risk drugs in the hiPSC-CMs. These data indicate that deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia. Supported by ORIP (S10OD030264) and NHLBI.