Selected Grantee Publications
Identification of Basp1 as a Novel Angiogenesis-regulating Gene by Multi-Model System Studies
Khajavi et al., FASEB Journal. 2021.
https://pubmed.ncbi.nlm.nih.gov/33899275/
The authors previously used genetic diversity in inbred mouse strains to identify quantitative trait loci (QTLs) responsible for differences in angiogenic response. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. To investigate its role in vivo, they knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. They further showed that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results provide the first in vivo evidence to indicate the role of basp1 as an angiogenesis-regulating gene. Supported by ORIP (R24OD017870) and NEI.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
A Modular Master Regulator Landscape Controls Cancer Transcriptional Identity
Paul et al., Cell. 2021.
https://www.sciencedirect.com/science/article/pii/S0092867420316172
The mechanisms linking genomic alterations to transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, MR block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations. Supported by ORIP (S10OD012351 and S10OD021764) and NCI.
Intra-Strain Genetic Variation of Platyfish (Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory
Lu et al., Frontiers in Genetics . 2020.
https://www.frontiersin.org/articles/10.3389/fgene.2020.562594/full
Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis. Although the ancestors of the two X. maculatus parental lines, Jp163 A and Jp163 B, were siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to a regulator encoded by the X. maculatus genome; the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on their flanks. Comparative genomic analyses revealed genetic differences are associated with pathways highlighting fundamental cellular functions. Disruption of these baselines may give rise to spontaneous or inducible tumorigenesis. Supported by ORIP (R24OD011120), NCI, and NIGMS.
Induction and Characterization of Pancreatic Cancer in a Transgenic Pig Model
Boas et al., PLOS One. 2020.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239391
Preclinical testing of new therapies for pancreatic cancer has been challenging due to lack of a suitable large animal model. Pigs, however, have similar physiology and immune response to humans. Boas et al report the development of a porcine model for pancreatic cancer. H&E and immunohistochemical stains revealed undifferentiated carcinomas, like those of human pancreatobiliary systems. In several pigs, angiographies revealed that the artery supplying the pancreatic tumor could be catheterized using a 2.4 F microcatheter. In summary, pancreatic cancer can be induced in a transgenic pig, and intra-arterial procedures using catheters designed for human interventions were feasible in this model. Supported by ORIP (U42OD011140) and NCI.