Selected Grantee Publications
SREBP-Dependent Regulation of Lipid Homeostasis Is Required for Progression and Growth of Pancreatic Ductal Adenocarcinoma
Ishida et al., Cancer Research Communications. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11444119
Lipids are crucial for tumor cell proliferation, and sterol regulatory element-binding protein (SREBP) activation drives lipid synthesis and uptake to maintain cancer growth. This study investigated the role of the SREBP pathway and its regulator, SREBP cleavage–activating protein (SCAP), in lipid metabolism during the development and progression of pancreatic ductal adenocarcinoma (PDAC). Using female mouse xenograft models and male and female pancreas-specific Scap knockout transgenic mice, researchers demonstrated that SCAP is essential for PDAC progression in low-nutrient conditions, linking lipid metabolism to tumor growth. These findings highlight SREBP as a key therapeutic target for PDAC, offering potential strategies for improving treatment by disrupting cancer-associated metabolic reprogramming. Supported by ORIP (T32OD011089), NCI, NHLBI, and NIGMS.
Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines
Vasilatis et al., International Journal of Molecular Sciences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39201315
Prostate cancer (PCa) ranks second worldwide in cancer-related mortality, but only a few animal models exhibit naturally occurring PCa that recapitulates the symptoms of the disease. Neutered dogs have an increased risk of PCa and often lack androgen receptor (AR) signaling, which is involved in upregulating tumorigenesis but can also suppress aggressive cell growth. In this study, researchers sought to understand more about the role of AR signaling in canine PCa initiation and progression by restoring AR in canine PCa cell lines and treating them with dihydrotestosterone. One cell line exhibited AR-mediated tumor suppression; one cell line showed altered proliferation (but not migration or invasion); and a third cell line exhibited AR-mediated alterations in migration and invasion (but not proliferation). The study highlights the heterogeneous nature of PCa in dogs and humans but suggests that AR signaling might have therapeutic potential under certain conditions. Supported by ORIP (T32OD011147).
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.