Selected Grantee Publications
Alterations in Tumor Aggression Following Androgen Receptor Signaling Restoration in Canine Prostate Cancer Cell Lines
Vasilatis et al., International Journal of Molecular Sciences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39201315
Prostate cancer (PCa) ranks second worldwide in cancer-related mortality, but only a few animal models exhibit naturally occurring PCa that recapitulates the symptoms of the disease. Neutered dogs have an increased risk of PCa and often lack androgen receptor (AR) signaling, which is involved in upregulating tumorigenesis but can also suppress aggressive cell growth. In this study, researchers sought to understand more about the role of AR signaling in canine PCa initiation and progression by restoring AR in canine PCa cell lines and treating them with dihydrotestosterone. One cell line exhibited AR-mediated tumor suppression; one cell line showed altered proliferation (but not migration or invasion); and a third cell line exhibited AR-mediated alterations in migration and invasion (but not proliferation). The study highlights the heterogeneous nature of PCa in dogs and humans but suggests that AR signaling might have therapeutic potential under certain conditions. Supported by ORIP (T32OD011147).
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.