Selected Grantee Publications
- Clear All
- 190 results found
- Cardiovascular
- HIV/AIDS
Blocking α4β7 Integrin Delays Viral Rebound in SHIVSF162P3-Infected Macaques Treated with Anti-HIV Broadly Neutralizing Antibodies
Frank et al., Science Translational Medicine. 2021.
https://doi.org/10.1126/scitranslmed.abf7201
To explore therapeutic potentials of combining anti-HIV broadly neutralizing antibodies (bNAbs) with α4β7 integrin blockade using the monoclonal antibody Rh-α4β7, investigators treated SHIVSF162P3-infected, viremic macaques with bNAbs only or bNAbs and Rh-α4β7. Treatment with bNAbs alone decreased viremia below 200 copies/ml in eight out of eight macaques, but seven of the monkeys rebounded within 3 weeks. In contrast, three of six macaques treated with both Rh-α4β7 and bNAbs maintained viremia below 200 copies/ml for 21 weeks, whereas three of those monkeys rebounded after 6 weeks. These findings suggest that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques. Supported by ORIP (P51OD011104, U42OD010568, U42OD024282, P40OD028116), NIAID, and NCI.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.
Deep Learning-Based Framework for Cardiac Function Assessment in Embryonic Zebrafish from Heart Beating Videos
Naderi et al., Computers in Biology and Medicine. 2021.
https://www.sciencedirect.com/science/article/pii/S0010482521003590
Zebrafish is a powerful model system for a host of biological investigations, cardiovascular studies, and genetic screening. However, the current methods for quantifying and monitoring zebrafish cardiac functions involve tedious manual work and inconsistent estimations. Naderi et al. developed a Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of wildtype and cardiomyopathy mutant zebrafish embryos. The framework could be widely applicable with any laboratory resources, and the automatic feature holds promise to enable efficient, consistent, and reliable processing and analysis capacity. Supported by ORIP (R44OD024874)
Interleukin-15 Response Signature Predicts RhCMV/SIV Vaccine Efficacy
Barrenäs et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009278
Standard immunogenicity measures do not predict efficacy of a vaccine based on strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV). This vaccine robustly protects just over half of immunized monkeys. Using functional genomics, researchers found that RhCMV/SIV efficacy is correlated with a vaccine-induced response to interleukin-15 (IL-15) that includes modulation of immune cell, inflammation, toll-like receptor signaling, and cell death programming pathways. RhCMV/SIV imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited CD8+ T cells to mediate protection against SIV. Supported by ORIP (P51OD010425, P51OD011092), NIAID, and NCI.
Recrudescence of Natural Coccidioidomycosis During Combination Antiretroviral Therapy in a Pigtail Macaque Experimentally Infected with Simian Immunodeficiency Virus
Guerriero et al., AIDS Research and Human Retroviruses. 2021.
https://doi.org/10.1089/AID.2020.0228
Coccidioidomycosis is a common fungal infection in people living with HIV, particularly in regions where Coccidioides is endemic, such as the U.S. Southwest. Researchers diagnosed a recrudescent case of previously treated, naturally occurring coccidioidomycosis in a pigtail macaque experimentally infected with simian immunodeficiency virus (SIV) and virally suppressed on combination antiretroviral therapy (cART). Coccidioides IgG antibody titer became detectable before discontinuation of cART, but symptomatic coccidioidomycosis developed after cART withdrawal. This animal was screened and treated in accordance with the guidelines for coccidioidomycosis prevention and treatment. The researchers conclude that macaques with coccidioidomycosis history should be excluded from HIV studies. Supported by ORIP (P51OD010425), NIAID, and NIMH.
Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: A Model for Passive Immunotherapy During Breastfeeding
Rosenberg et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.00268-21
Preventing vertical transmission of HIV to newborns is an unmet medical need in resource poor countries. Using a breastfeeding macaque model with multiple simian-human immunodeficiency virus challenge, researchers assessed the protective efficacy of two human broadly neutralizing antibodies (bnAbs) against HIV, PGT121 and VRC07-523, which are produced by a plant expression system. Despite the transient presence of plasma viral RNA, the bnAbs prevented productive infection in all newborns with no sustained plasma viremia, compared to viral loads ranging from 103 to 5x108 in four untreated controls. Thus, plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
Tissue-Specific Transcriptional Profiling of Plasmacytoid Dendritic Cells Reveals a Hyperactivated State in Chronic SIV Infection
Lee et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009674
Persistent immune activation is an obstacle to optimal health for people living with HIV. Using RNA sequencing, researchers investigated the immunostimulatory potential of plasmacytoid dendritic cells (pDCs) in chronic SIV infection in rhesus macaques. They observed that pDCs have highly activated profiles in these animals. In contrast, pDCs from SIV-infected sooty mangabeys (natural hosts for SIV) had expression profiles similar to uninfected animals. In chronically infected rhesus macaques, interferon alpha transcripts were readily detected in lymph node-homing pDCs, but not those from blood. Therefore, pDCs are a major producer of type-I interferon in chronic SIV infection and could be a useful immunotherapy target. Supported by ORIP (R24OD010445, P51OD011132, P51OD011092, S10OD026799) and NIAID.
Immune Inactivation of Anti-Simian Immunodeficiency Virus Chimeric Antigen Receptor T Cells in Rhesus Macaques
Haeseleer et al., Molecular Therapy–Methods & Clinical Development. 2021.
https://doi.org/10.1016/j.omtm.2021.06.008
Chimeric antigen receptor (CAR) T cell therapies are under development as potential HIV cures. Researchers found that CAR T cells expressing a single-chain variable fragment (scFv) that recognizes V1 or V3 of the SIV envelope eliminated SIV-infected T cells in vitro. However, in vivo infusion of these CAR T cells in rhesus macaques resulted in no detectable antiviral activity. Anti-SIV IgG antibodies in the SIV-infected animals were associated with inhibited CAR T cell effector functions. Thus, lack of in vivo efficacy of CAR T cells might be due to antibodies blocking the interaction between the CAR scFv and its epitope. Supported by ORIP (P51OD011092) and NIAID.
Gut Germinal Center Regeneration and Enhanced Antiviral Immunity by Mesenchymal Stem/Stromal Cells
Weber et al., JCI Insight. 2021.
https://doi.org/10.1172/jci.insight.149033
Researchers investigated the effects of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression in SIV-infected rhesus macaques. MSC treatment heightened virus-specific responses and reduced viral load. Clearance of SIV-positive cells from gut mucosal effector sites was correlated with regeneration of germinal centers, restoration of follicular B cells and T follicular helper cells, and enhanced antigen presentation by viral trapping within the follicular dendritic cell network. These changes were associated with enhanced gene expression for type I/II interferon signaling, B cell proliferation, and interleukin 7. MSC treatment also activated metabolic pathways associated with enhanced immunity and viral reduction. Supported by ORIP (P51OD011107) and NIAID.
Antibody-Based CCR5 Blockade Protects Macaques From Mucosal SHIV Transmission
Chang et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23697-6
The efficacy of antiretroviral therapy (ART) as pre-exposure prophylaxis against HIV is hindered by incomplete patient adherence and ART-resistant variants. Researchers found that competitive inhibition of HIV Env-CCR5 binding via the CCR5-specific antibody Leronlimab protects rhesus macaques against infection following repeated intrarectal challenges with a CCR5-tropic simian-human immunodeficiency virus (SHIVSF162P3). Biweekly injection of Leronlimab at 50 mg/kg provided complete protection from SHIV infection. Tissue biopsies from protected macaques post-challenge revealed complete CCR5 receptor occupancy and an absence of viral DNA. After Leronlimab washout, transfer of hematologic cells into naïve monkeys did not transmit infection, supporting the initiation of clinical trials. Supported by ORIP (P51OD011092, K01OD026561, P40OD028116) and NIAID.