Selected Grantee Publications
- Clear All
- 53 results found
- Infectious Diseases
- 2024
Cytomegalovirus Infection Facilitates the Costimulation of CD57+CD28- CD8 T Cells in HIV Infection and Atherosclerosis via the CD2–LFA-3 Axis
Winchester et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38047900/
People with HIV are at increased risk of developing atherosclerosis and other cardiovascular diseases, and HIV coinfection with cytomegalovirus (CMV) is associated with immune activation and inflammation. In this study, researchers explored the role of the CD2–LFA-3 axis in driving activation and proliferation of CD57+CD28- CD8 T cells using clinical samples from patients with or without HIV. They propose a model in which CMV infection is linked to enhanced CD2 expression on the T cells, enabling the activation via LFA-3 signals and potentially leading to cardiopathogenic interactions with vascular endothelial cells that express LFA-3. This work provides a potential therapeutic target in atherosclerosis development and progression, especially for people with HIV. Supported by ORIP (P51OD011132, U24OD011023) and NIAID.
Preclinical Safety and Biodistribution of CRISPR Targeting SIV in Non-Human Primates
Burdo et al., Gene Therapy. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11090835/
Nonhuman primates have served as a valuable resource for evaluating novel eradication and cure strategies for HIV infection. Using a male rhesus macaque model, researchers demonstrated the safety and utility of CRISPR gene-editing technology for targeting integrated simian immunodeficiency virus (SIV). Their work suggests that a single intravenous inoculation for HIV gene editing can be utilized to reach viral reservoirs throughout the body. Additionally, no off-target effects or abnormal pathology were observed. Together, these findings support the continued development of HIV eradicative cure strategies using CRISPR technology in humans. Supported by ORIP (P40OD012217, U42OD021458).
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.