Selected Grantee Publications
- Clear All
- 3 results found
- Infectious Diseases
- R21
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).
Probiotic Therapy During Vaccination Alters Antibody Response to Simian-Human Immunodeficiency Virus Infection But Not to Commensals
Wilson et al., AIDS Research and Human Retroviruses. 2023.
https://www.doi.org/10.1089/AID.2022.0123
Strategies to boost vaccine-induced mucosal humoral responses are critical to developing an HIV-1 vaccine, and probiotic supplementation could help boost antibody responses. Researchers analyzed antibody titers to explore this topic in rhesus macaques (sex not specified) infected with simian–human immunodeficiency virus (SHIV). They reported that probiotic treatment during vaccination led to delayed kinetics in the circulating HIV-specific IgA response after breakthrough SHIV infection. These findings highlight the potential of probiotic supplementation for reducing IgA-specific HIV antibodies in the plasma, which could help reduce HIV acquisition in vaccinated individuals. Supported by ORIP (P51OD011104, R21OD031435) and NIAID.
Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection
Han et al., American Journal of Respiratory Cell and Molecular Biology. 2021.
https://doi.org/10.1165/rcmb.2020-0354OC
A rapidly deployable mouse model that recapitulates a disease caused by a novel pathogen would be a valuable research tool during a pandemic. Researchers were able to produce C57BL/6J mice with lung expression of human angiotensin-converting enzyme 2 (hACE2), the receptor for SARS-CoV-2. They did so by oropharyngeal delivery of a recombinant human adenovirus type 5 expressing hACE2. The transduced mice were then infected with SARS-CoV-2. Thereafter, the mice developed interstitial pneumonia with perivascular inflammation, exhibited higher viral load in lungs compared to controls, and displayed a gene expression phenotype resembling the clinical response in lungs of humans with COVID-19. Supported by ORIP (P51OD011104, R21OD024931), NHLBI, and NIGMS.