Selected Grantee Publications
- Clear All
- 141 results found
- Infectious Diseases
- P51
Antibody-Based CCR5 Blockade Protects Macaques From Mucosal SHIV Transmission
Chang et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23697-6
The efficacy of antiretroviral therapy (ART) as pre-exposure prophylaxis against HIV is hindered by incomplete patient adherence and ART-resistant variants. Researchers found that competitive inhibition of HIV Env-CCR5 binding via the CCR5-specific antibody Leronlimab protects rhesus macaques against infection following repeated intrarectal challenges with a CCR5-tropic simian-human immunodeficiency virus (SHIVSF162P3). Biweekly injection of Leronlimab at 50 mg/kg provided complete protection from SHIV infection. Tissue biopsies from protected macaques post-challenge revealed complete CCR5 receptor occupancy and an absence of viral DNA. After Leronlimab washout, transfer of hematologic cells into naïve monkeys did not transmit infection, supporting the initiation of clinical trials. Supported by ORIP (P51OD011092, K01OD026561, P40OD028116) and NIAID.
IL-21 and IFNα Therapy Rescues Terminally Differentiated NK Cells and Limits SIV Reservoir in ART-Treated Macaques
Harper et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23189-7
Nonpathogenic simian immunodeficiency virus (SIV) infections in natural hosts, such as vervet monkeys, are characterized by a lack of gut microbial translocation, robust secondary lymphoid natural killer cell responses, and limited SIV dissemination in lymph node B-cell follicles. Using antiretroviral therapy-treated, SIV-infected rhesus monkeys—a pathogenic model—researchers showed that interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. The correlated reduction of replication-competent SIV in lymph node demonstrates that vervet-like natural killer cell differentiation can be rescued in rhesus monkeys to promote viral clearance. Supported by ORIP (P51OD011132, R24OD010947), NIAID, and NCI.
Tract Pathogen-Mediated Inflammation Through Development of Multimodal Treatment Regimen and Its Impact on SIV Acquisition in Rhesus Macaques
Bochart et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009565
In addition to being premier HIV models, rhesus macaques are models for other infectious diseases and colitis, where background colon health and inflammation may confound results. Starting with the standard specific-pathogen-free (SPF) model, researchers established a gastrointestinal pathogen-free (GPF) colony via multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common endemic pathogens (EPs). This treatment combined with continued pathogen exclusion eliminated common EPs, improved mucosal barriers, and reduced mucosal and systemic inflammation without microbiota disruption. GPF animals challenged with SIV intrarectally demonstrated a more controlled and consistent rate of SIV acquisition, suggesting the value of this model for HIV studies. Supported by ORIP (U42OD023038, P51OD011092), NCI, and NIAID.
Modulation of MHC-E Transport by Viral Decoy Ligands Is Required for RhCMV/SIV Vaccine Efficacy
Verweij et al., Science. 2021.
https://doi.org/10.1126/science.abe9233
Rhesus cytomegalovirus (RhCMV) strain 68-1-vectored simian immunodeficiency virus (SIV) vaccines elicit strong CD8+ T cell responses that can clear SIV infections. Peptides targeted by these T cells are presented on major histocompatibility complex (MHC) II and MHC-E rather than MHC-Ia. Researchers showed that VL9 drives intracellular transport of MHC-E and recognition of RhCMV-infected targets by MHC-E-restricted CD8+ T cells. Specific-pathogen-free (SPF) rhesus macaques vaccinated with a mutant 68-1 RhCMV lacking VL9 showed no priming of MHC-E-restricted CD8+ T cells and no protection against SIV, suggesting that future effective CMV-based HIV vaccines will require MHC-E-restricted CD8+ T cell priming. Supported by ORIP (U42OD023038, P51OD011092), NIAID, and NCI.
Functional Convergence of a Germline-Encoded Neutralizing Antibody Response in Rhesus Macaques Immunized with HCV Envelope Glycoproteins
Chen et al., Immunity. 2021.
https://doi.org/10.1016/j.immuni.2021.02.013
Immunoglobulin heavy chain variable gene IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection in humans. An IGHV1-69 ortholog, VH1.36, is preferentially used for bnAbs isolated from rhesus macaques immunized against HCV Env. Researchers investigated the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by HCV Env vaccination of macaques and compared their findings to IGHV1-69-encoded bnAbs from HCV patients. The investigators found that macaque VH1.36- and human IGHV1-69-encoded bnAbs share many common features, which provides an excellent framework for rational HCV vaccine design and testing. Supported by ORIP (P51OD011133, U42OD010442), NIAID, NCI, and NIGMS.
Sensitive Tracking of Circulating Viral RNA Through All Stages of SARS-CoV-2 Infection
Huang et al., Journal of Clinical Investigation. 2021.
https://www.jci.org/articles/view/146031
Circulating SARS-CoV-2 RNA could represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples. Researchers developed a CRISPR-amplified, blood-based COVID-19 (CRISPR-ABC) assay to detect SARS-CoV-2 in plasma. They evaluated the assay using samples from SARS-CoV-2-infected African green monkeys and rhesus macaques, as well as from COVID-19 patients. CRISPR-ABC consistently detected viral RNA in the plasma of the experimentally infected primates from 1 to 28 days after infection. The increases in plasma SARS-CoV-2 RNA in the monkeys preceded rectal swab viral RNA increases. In the patient cohort, the new assay demonstrated 91.2% sensitivity and 99.2% specificity versus RT-qPCR nasopharyngeal testing, and it also detected COVID-19 cases with transient or negative nasal swab RT-qPCR results. These findings suggest that detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR could improve COVID-19 diagnosis, facilitate the evaluation of SARS-CoV-2 infection clearance, and help predict the severity of infection. Supported by ORIP (P51OD011104).
Cytomegaloviral Determinants of CD8+ T Cell Programming and RhCMV/SIV Vaccine Efficacy
Malouli et al., Science Immunology. 2021.
https://www.science.org/doi/10.1126/sciimmunol.abg5413
Cytomegalovirus (CMV)-based vaccine vectors were developed to leverage the ability of CMVs to elicit sustained CD4+ and CD8+ T cell responses with broad tissue distribution. The 68-1 rhesus cytomegalovirus (RhCMV) vectors that express simian immunodeficiency virus (SIV) inserts induce major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+T cell responses. The contribution of this unconventional MHC restriction to RhCMV/SIV vaccine efficacy are poorly understood. Researchers demonstrated that these responses result from genetic rearrangements in 68-1 RhCMV that disrupt the function of eight immunomodulatory proteins encoded by the virus. Repair of each of these genes with either RhCMV or human CMV counterparts shifted responses to MHC-Ia-restricted, or MHC-Ia- and MHC-II-restricted, CD8 T cell responses, but repairing the RhCMV genes did not protect against SIV. These findings suggest that MHC-E-restricted CD8+ T cell responses may be critical to protection against SIV. Supported by ORIP (U42OD023038, P51OD011092).
Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies Against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone
Hessell et al., Journal of Immunology. 2021.
https://doi.org/10.4049/jimmunol.2001010
In the RV144 human immunodeficiency virus (HIV) vaccine trial, the only immune response associated with reduced infection was a high level of antibodies (Abs) targeting the second variable (V2) loop of the HIV envelope protein (Env). The mechanism underlying this suggested contribution of V2 Abs to protection remains unknown. Researchers tested the role of vaccine-induced anti-V2 Abs in rhesus macaques. Three vaccines strategies were designed to induce only V1V2 Abs before simian-human immunodeficiency virus (SHIV) challenge. Vaccine-induced V2 Abs did not independently control SHIV infection. However, neutralizing and virus capture anti-Env Abs were found to correlate with SHIV control. Supported by ORIP (P51OD011092) and NIAID.
Immune Variations Throughout the Course of Tuberculosis Treatment and its Relationship with Adrenal Hormone Changes in HIV-1 Patients Co-Infected with Mycobacterium tuberculosis
Vecchione et al., Tuberculosis. 2021.
https://doi.org/10.1016/j.tube.2020.102045
The probability of developing tuberculosis (TB) is 19 times higher in people infected with human immunodeficiency virus (HIV) compared to the general population. As host immune response defines the course of infection, researchers aimed to identify immuno-endocrine changes over six months of anti-TB chemotherapy in HIV+ people. Throughout the course of anti-TB/HIV treatment, plasma dehydroepiandrosterone (DHEA) and DHEA-sulfate levels increased while cortisol decreased. The balance between cortisol and DHEA, together with clinical assessment, served as a predictor of clinical outcome after anti-TB treatment. This research suggests that combined anti-HIV/TB therapies may partially restore both immune function and adrenal hormone levels. Supported by ORIP (P51OD011133).
Polyfunctional Tier 2–Neutralizing Antibodies Cloned Following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor
Spencer et al., Journal of Immunology. 2021.
https://doi.org/10.4049/jimmunol.2001082
HIV vaccine efforts are limited by viral strain diversity and the shielding of neutralization epitopes on the viral envelope, yet isolation of broadly neutralizing antibodies from infected individuals suggests the potential for eliciting protective antibodies through vaccination. Researchers cloned 58 monoclonal antibodies (mAbs) from a rhesus monkey immunized with envelope glycoprotein immunogens from an HIV-1 clade C–infected volunteer. Twenty mAbs exhibited some neutralizing activity. Cloned mAbs targeting the V3 region and CD4 binding site were capable of tier 2 (i.e., moderate) neutralization. This study demonstrates partial recapitulation of the human donor’s humoral immune response through nonhuman primate vaccination. Supported by ORIP (P51OD011092) and NIAID.