Selected Grantee Publications
- Clear All
- 27 results found
- Infectious Diseases
- P40
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
SHIV Remission in Macaques With Early Treatment Initiation and Ultra Long-Lasting Antiviral Activity
Daly et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39632836
Antiretroviral therapy (ART) suppresses HIV and simian immunodeficiency virus (SIV) replication but cannot eliminate reservoirs of long-lived infected cells that enable rebound after discontinuation of ART. These researchers hypothesized that ART designed to have long-lasting activity and penetrate tissue reservoirs would be optimized against HIV or SIV remission. Macaques were treated with a four-drug regimen (i.e., oral emtricitabine/tenofovir alafenamide and long-acting cabotegravir/rilpivirine) designed to improve dosing of immune cells, with or without the immune-activating drug vesatolimod (VES), after the onset of SIV viremia. The animals were monitored for 1 year with treatment and 2 additional years following treatment discontinuation. Durable viral suppression was observed in all animals treated with the optimized ART regimen with or without VES. These results will inform novel HIV treatment regimens with long-lasting antiviral activity in humans. Supported by ORIP (P40OD028116).
Characterization of Collaborative Cross Mouse Founder Strain CAST/EiJ as a Novel Model for Lethal COVID-19
Baker et al., Scientific Reports. 2024.
https://www.nature.com/articles/s41598-024-77087-1
Researchers characterized the Collaborative Cross (CC) mouse model founder strain CAST/EiJ as a novel model for severe COVID-19, exhibiting high viral loads and mortality. By leveraging genetically diverse CC strains, this study identified variations in susceptibility and survival against SARS-CoV-2 variants. CAST/EiJ mice developed lung pathology and mortality despite antiviral defenses, making them a valuable tool for understanding host–pathogen interactions. The findings emphasize the utility of diverse animal models in uncovering genetic and immunological factors that influence disease outcomes, facilitating the development of targeted therapies against COVID-19 to mitigate future pandemics. Supported by ORIP (P40OD011102).
Administration of Anti-HIV-1 Broadly Neutralizing Monoclonal Antibodies With Increased Affinity to Fcγ Receptors During Acute SHIV AD8-EO Infection
Dias et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-51848-y
Anti-HIV broadly neutralizing antibodies (bNAbs) mediate virus neutralization and antiviral effector functions through Fab and Fc domains, respectively. This study investigated the efficacy of wild-type (WT) bNAbs and modified bNAbs with enhanced affinity for Fcγ receptors (S239D/I332E/A330L [DEL]) after acute simian-HIVAD8-EO (SHIVAD8-EO) infection in male and female rhesus macaques. The emergence of the virus in the plasma and lymph nodes occurred earlier in macaques given DEL bNAbs than in those given WT bNAbs. Overall, the administration of DEL bNAbs revealed higher levels of immune responses. The results suggest that bNAbs with an enhanced Fcγ receptor affinity offer a potential therapeutic strategy by targeting HIV more effectively during early infection stages. Supported by ORIP (P40OD028116), NCI, and NIAID.
Comparison of the Immunogenicity of mRNA-Encoded and Protein HIV-1 Env-ferritin Nanoparticle Designs
Mu et al., Journal of Virology. 2024.
https://journals.asm.org/doi/10.1128/jvi.00137-24
Inducing broadly neutralizing antibodies (bNAbs) against HIV-1 remains a challenge because of immune system limitations. This study compared the immunogenicity of mRNA-encoded membrane-bound envelope (Env) gp160 to HIV-1 Env-ferritin nanoparticle (NP) technology in inducing anti-HIV-1 bNAbs. Membrane-bound mRNA encoding gp160 was more immunogenic than the Env-ferritin NP design in DH270 UCA KI mice, but at lower doses. These results suggest further analysis of mRNA design expression and low-dose immunogenicity studies are necessary for anti-HIV-1 bNAbs. Supported by ORIP (P40OD012217, U42OD021458) and NIAID.
Induction of Durable Remission by Dual Immunotherapy in SHIV-Infected ART-Suppressed Macaques
Lim et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38422185/
The latent viral reservoir is established within the first few days of HIV infection and remains a barrier to a clinical cure. Researchers characterized the effects of a combined Anktiva (N-803) treatment with broadly neutralizing antibodies (bNAbs) using male and female rhesus macaques infected with simian–human immunodeficiency virus infection. Their data suggest that these agents synergize to enhance CD8+ T-cell function, particularly when multiple bNAbs are used. Taken together, this work indicates that immune-mediated control of viral rebound is not a prerequisite for sustained remission after discontinuation of antiretroviral therapy and that immune-mediated control of viral rebound is achievable, sufficient, and sustainable in this model. Supported by ORIP (P51OD011106, P40OD028116, R24OD011195) and NIAID.
Trade-Offs Shaping Transmission of Sylvatic Dengue and Zika Viruses in Monkey Hosts
Hanley et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38538621/
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into neotropical sylvatic cycles. This article reports that the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. The data revealed evidence of an immunologically mediated trade‑off between duration and magnitude of virus replication, as higher-peak ZIKV titers are associated with shorter durations of viremia, and higher natural killer cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas. Supported by ORIP (P40OD010938) and NIAID.
Preclinical Safety and Biodistribution of CRISPR Targeting SIV in Non-Human Primates
Burdo et al., Gene Therapy. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11090835/
Nonhuman primates have served as a valuable resource for evaluating novel eradication and cure strategies for HIV infection. Using a male rhesus macaque model, researchers demonstrated the safety and utility of CRISPR gene-editing technology for targeting integrated simian immunodeficiency virus (SIV). Their work suggests that a single intravenous inoculation for HIV gene editing can be utilized to reach viral reservoirs throughout the body. Additionally, no off-target effects or abnormal pathology were observed. Together, these findings support the continued development of HIV eradicative cure strategies using CRISPR technology in humans. Supported by ORIP (P40OD012217, U42OD021458).
CD8+ T Cells Control SIV Infection Using Both Cytolytic Effects and Non-Cytolytic Suppression of Virus Production
Policicchio et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589330/
HIV continuously evades and subdues the host immune responses through multiple strategies, and an understanding of these strategies can help inform research efforts. Using a mathematical model, investigators assessed whether CD8+ cells from male rhesus macaques exert a cytolytic response against infected cells prior to viral production. Their goal was to elucidate the possible mode of action of CD8+ cells on simian immunodeficiency virus (SIV)–infected cells. Models that included non‑cytolytic reduction of viral production best explained the viral profiles across all macaques, but some of the best models also included cytolytic mechanisms. These results suggest that viral control is best explained by the combination of cytolytic and non-cytolytic effects. Supported by ORIP (P40OD028116, R01OD011095), NIAID, NIDDK, and NHLBI.
CD8+ Cells and Small Viral Reservoirs Facilitate Post-ART Control of SIV Replication in M3+ Mauritian Cynomolgus Macaques Initiated on ART Two Weeks Post-Infection
Harwood et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553806/
A rare group of people infected with HIV can achieve sustainable HIV remission after antiretroviral therapy (ART) withdrawal, but the underlying mechanisms are not understood fully. A team of investigators observed post-treatment control in a cohort of male cynomolgus macaques that were initiated on ART 2 weeks post-infection. Additionally, they reported that the cynomolgus macaques had smaller acute reservoirs than similarly infected rhesus macaques. Collectively, these data suggest that a combination of small reservoirs and immune-mediated virus suppression contributes to post-treatment control in cynomolgus macaques. This model could be used in future studies to develop therapeutic interventions. Supported by ORIP (P51OD011106, P40OD028116), NIAID, and NCI.