Selected Grantee Publications
- Clear All
- 281 results found
- Cancer
- Infectious Diseases
Epigenetic Dysregulation From Chromosomal Transit in Micronuclei
Agustinus et al., Nature . 2023.
https://www.nature.com/articles/s41586-023-06084-7
The authors reported a mechanistic link between epigenetic alterations and chromosomal instability induced during their transit in micronuclei, both being hallmarks of advanced and metastatic cancers. It was demonstrated that the landscape of histone post-translational modifications was profoundly changed due to missegregation of mitotic chromosomes, their sequestration in micronuclei and subsequent rupture of the micronuclear envelope. The transcriptional redistribution was attributed to micronuclei’s strong positional bias with increased promoter accessibility. The continuous formation and reincorporation of micronuclei promotes epigenetic reprogramming and heterogeneity in cancer. Supported by ORIP (S10OD030286) and others.
Sequential Intrahost Evolution and Onward Transmission of SARS-CoV-2 Variants
Gonzalez-Reiche et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239218/
Most patients with COVID-19 clear the virus upon resolution of acute infection, but a subset of immunocompromised individuals develop persistent SARS-CoV-2 infections. In this study, investigators describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of the Omicron BA.1 variant Omicron BA.1.23. The study demonstrated that in the presence of suboptimal immune responses, persistent viral replication is an important driver of SARS-CoV-2 diversification. This and other studies also highlight that strategies to prevent virus persistence and shedding and more effective therapies are needed to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients. Supported by ORIP (S10OD026880, S10OD030463), NIAID, and NCATS.
p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy
Faget et al., Cancer Discovery. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238649/
This study emphasizes the importance of the metastatic tumor microenvironment in metastatic breast cancer growth and the identification of effective antimetastatic therapies. Using a stromal labeling approach and single-cell RNA sequencing, the authors showed that a combination of p38MAPK inhibition (p38i) and anti-OX40 synergistically reduced metastatic tumor growth and increased overall survival. Further engagement of cytotoxic T cells cured all metastatic disease in mice and produced durable immunologic memory. The Cancer Genome Atlas data analysis revealed that patients with p38i metastatic stromal signature and a high tumor mutational burden (TMB) had increased overall survival. These findings suggest that patients with high TMB would benefit the most from the p38i plus anti-OX40 approach. Supported by ORIP (S10OD028483), NIA, NCI, and NIGMS.
Simultaneous Evaluation of Treatment Efficacy and Toxicity for Bispecific T-Cell Engager Therapeutics in a Humanized Mouse Model
Yang et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300040R
Immuno-oncology–based therapies are an evolving powerful treatment strategy that targets the immune system and harnesses it to kill tumor cells directly. Investigators describe the novel application of a humanized mouse model that can simultaneously evaluate the efficacy of bispecific T cell engagers to control tumor burden and the development of cytokine release syndrome. The model also captures variability in responses for individual patients. Supported by ORIP (R24OD026440), NIAID, NCI, and NIDDK.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Early Detection of Pseudocapillaria tomentosa by qPCR in Four Lines of Zebrafish, Danio rerio (Hamilton 1882)
Schuster et al., Journal of Fish Diseases. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/jfd.13773
The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation, and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in an estimated 15% of zebrafish laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here the authors determined that the test on zebrafish intestines was effective for earlier detection. Supported by ORIP (R24OD010998, P40OD011021).
Brain Microglia Serve as a Persistent HIV Reservoir Despite Durable Antiretroviral Therapy
Tang et al., The Journal of Clinical Investigation. 2023.
https://www.doi.org/10.1172/JCI167417
Brain microglia are likely to play a role in rebound viremia following the cessation of antiretroviral therapy, but more work is needed to fully understand HIV persistence in the central nervous system (CNS). The investigators developed a protocol to isolate highly pure populations of brain myeloid cells and microglia from the tissues of male rhesus macaques, as well as from rapid autopsies of men and women with HIV. Their observations support the concept that brain microglia are a stable reservoir of quiescent infection. Thus, this work provides a physiologically relevant platform for studies of the biology of CNS reservoirs. Supported by ORIP (P51OD011132), NIAID, and NIMH.
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
Innate Lymphoid Cells and Interferons Limit Neurologic and Articular Complications of Brucellosis
Moley et al., American Journal of Pathology. 2023.
https://www.sciencedirect.com/science/article/pii/S0002944023001980?via%3Dihub=
Brucellosis is a globally significant zoonotic disease. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. Following pulmonary infection with B. melitensis, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Transcriptional analysis of Brucella-infected brains revealed marked upregulation of genes associated with inflammation and interferon responses. Collectively, these findings indicate that ILCs and interferons play an important role in prevention of focal complications during Brucella infection and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis. Supported by ORIP (T32OD011126) and NIAID.
Infection of the Maternal–Fetal Interface and Vertical Transmission Following Low-Dose Inoculation of Pregnant Rhesus Macaques (Macaca mulatta) with an African-Lineage Zika Virus
Koenig et al., PLOS ONE. 2023.
https://doi.org/10.1371/journal.pone.0284964
Researchers examined transmission of Zika virus to nonhuman primate fetuses during pregnancy. Even with a low dosage of inoculation of the dams, the investigators found that the Zika virus infected fetuses, despite the presence of a “placental fortress,” which normally protects fetuses during gestation. This transmission illustrates the high level of infectivity threat that Zika poses, which may increase if mosquitoes expand their global habitats. Understanding how Zika breaches the placental barrier will help researchers develop strategies to prevent fetal infection during pregnancy and thereby prevent adverse outcomes, such as brain malformation defects. Supported by ORIP (P51OD011106, S10OD023526), NIAID, NCI, and NIGMS.