Selected Grantee Publications
- Clear All
- 72 results found
- Cancer
- Rare Diseases
Transcriptome- and Proteome-Wide Effects of a Circular RNA Encompassing Four Early Exons of the Spinal Muscular Atrophy Genes
Luo, Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38714739/
Spinal muscular atrophy (SMA) is a leading genetic cause of mortality in infants and often results from a deficiency of deletions of or mutations in the SMN1 gene. In this study, researchers report the transcriptome- and proteome-wide effects of overexpression of C2A‑2B3-4, a circular RNA produced by SMN1 and SMN2, in cells. They report that C2A-2B-3-4 is associated with expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation, and neuromuscular junction formation. More work is needed to investigate the role of these genes in processes associated with SMA and other pathological conditions, including cancer and male infertility. Supported by ORIP (T35OD027967) and NINDS.
CD8+ T Cell Targeting of Tumor Antigens Presented by HLA-E
Iyer, Science Advances. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086602/
Researchers have hypothesized that human leukocyte antigen-E (HLA-E)–positive cancer cells could be targeted by HLA-E–restricted CD8+ T cells. In this study, the authors assessed whether major histocompatibility complex E (MHC-E) expression by cancer cells can be targeted for MHC-E–restricted T cell control. Using male rhesus macaques, they found that a cytomegalovirus can be used as a vector to generate specific immune cells that can target cancer cells. The authors conclude that targeting HLA-E with restricted, specific CD8+ T cells could offer a new approach for immunotherapy of prostate cancer. Overall, this study supports the concept of a cancer vaccine. Supported by ORIP (P51OD011092) and NIAID.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Hasselluhn et al., Cancer Discovery. 2024.
https://pubmed.ncbi.nlm.nih.gov/37966260/
This study presents a key mechanism that prevents pancreatic ductal adenocarcinoma (PDAC) from undergoing neoangiogenesis, which affects its development, pathophysiology, metabolism, and treatment response. Using human and murine PDAC explants, which effectively retain the complex cellular interactions of native tumor tissues, and single-cell regulatory network analysis, the study identified a cascade of three paracrine pathways bridging between multiple cell types and acting sequentially, Hedgehog to WNT to VEGF, as a key suppressor of angiogenesis in KRAS-mutant PDAC cells. This study provides an experimental paradigm for dissecting higher-order cellular interactions in tissues and has implications for PDAC treatment strategies. Supported by ORIP (S10OD012351, S10OD021764), NCI, and NIDDK.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.
Targeting Pancreatic Cancer Metabolic Dependencies Through Glutamine Antagonism
Encarnación-Rosado et al., Nature Cancer. 2024.
https://pubmed.ncbi.nlm.nih.gov/37814010/
Pancreatic ductal adenocarcinoma (PDAC) cells thrive in the austere, complex tumor microenvironment by reprogramming their metabolism and relying on scavenging pathways, but more work is needed to translate this knowledge into clinically relevant therapeutic interventions. Investigators demonstrated that treating PDAC cells with a Gln antagonist, 6‑diazo-5-oxo-l-norleucine (DON), caused a metabolic crisis by globally impairing Gln metabolism, resulting in a significant decrease in proliferation. They observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. Combining this therapeutic with an extracellular-signal-regulated kinase (or ERK) signaling pathway inhibitor could further improve it. Supported by ORIP (S10OD021747), NCI, and NIAID.
Prime Editing–Mediated Correction of the CFTR W1282X Mutation in iPSCs and Derived Airway Epithelial Cells
Li et al., PLOS ONE. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686454/
Cystic fibrosis (CF) is caused by recessive mutations in the CF transmembrane conductance regulator (CFTR) gene. Correction of nonsense CFTR mutations, which affects 10% of CF patients, via genomic editing represents a promising therapeutic approach. In this study, investigators tested whether prime editing can be applied as a potential therapeutic modality. Induced pluripotent stem cells (iPSCs) from a CF patient homozygous for the CFTR W1282X mutation were used. Studies demonstrated that prime editing corrected mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. Supported by ORIP (R01OD01026594).