Selected Grantee Publications
- Clear All
- 24 results found
- Cancer
- Rare Diseases
- Imaging
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
Preclinical Use of a Clinically-Relevant scAAV9/SUMF1 Vector for the Treatment of Multiple Sulfatase Deficiency
Presa et al., Communications Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39870870
This study evaluates a gene therapy strategy using an adeno-associated virus (AAV)/SUMF1 vector to treat multiple sulfatase deficiency (MSD), a rare and fatal lysosomal storage disorder caused by mutations in the SUMF1 gene. Researchers delivered the functional gene to male and female Sumf1 knockout mice either neonatally or after symptom onset. Neonatal treatment via cerebral spinal fluid extended survival up to 1 year, alleviated MSD symptoms, and restored normal behavior and cardiac and visual function without toxicity. Treated tissues showed widespread SUMF1 expression and enzymatic activity. These findings support the translational potential of this gene replacement therapy for clinical use in MSD patients. Supported by ORIP (U42OD010921, U54OD020351, U54OD030187) and NCI.
Functional Differences Between Rodent and Human PD-1 Linked to Evolutionary Divergence
Masubuchi et al., Science Immunology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39752535/
Programmed cell death protein 1 (PD-1), an immune checkpoint receptor, regulates immunity against cancer. Rodent models (e.g., mice) do not exhibit the same response rates and immune-related adverse effects to PD-1 blocking drugs as patients with cancer. Only 59.6% amino acid sequence identity is conserved in human PD-1 (hu PD-1) and mouse PD-1 (mo PD-1). Researchers used mouse tumor models, coculture assays, and biophysical assays to determine key functional and biochemical differences between hu PD-1 and mo PD-1. HuPD-1 demonstrates stronger suppressive activity of interleukin-2 secretion and CD69 expression than mo PD-1 because of the ectodomain and intracellular domain, but not the transmembrane domain. Analysis of rodent evolution demonstrated that other inhibitory immunoreceptors were positively selected or had selection intensification over PD-1. Understanding the conservation and divergence of PD-1 signaling at the molecular level in humans compared with mice is needed to properly translate preclinical data to clinical therapeutics. Supported by ORIP (S10OD026929), NCI, and NIA.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Targeting Pancreatic Cancer Cell Stemness by Blocking Fibronectin-Binding Integrins on Cancer-Associated Fibroblasts
Wu et al., Cancer Research Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39785683
Cancer-associated fibroblasts (CAFs) stimulate the formation and progression of pancreatic adenocarcinoma (PDAC) through the generation of extracellular matrix (ECM). Researchers developed a bispecific antibody (bsAb) that targets α5β1 and αvβ3 integrins expressed on CAFs. Blockade using the bsAb resulted in reduced assembly of fibronectin and collagen fibers in vitro. An antifibrotic effect was observed when CAFs were plated for 72 hours prior to bsAb treatment; pre-deposited ECM was disrupted. Six- to 8-week-old female nu/nu mice treated with bsAb demonstrated fewer tumors and reduced tumor stiffness compared with those exposed to only CAFs co-injected with PDAC cells. These results support a potential novel PDAC therapeutic that targets CAF-mediated fibronectin assembly and ECM production. Supported by ORIP (K01OD030513) and NCI.
Integrative Multi-omics Analysis Uncovers Tumor-Immune-Gut Axis Influencing Immunotherapy Outcomes in Ovarian Cancer
Rosario et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39638782
Recurrent ovarian cancer (OC) is the deadliest gynecological malignancy, with a 5-year survival rate of 50% and a median progression-free survival (PFS) of 1.9 to 2.1 months. A trial cohort of 40 patients was treated with a combination of the anti-PD-1 pembrolizumab, the anti–vascular endothelial growth factor bevacizumab, and cyclophosphamide. The investigators conducted a multi-omics analysis—including transcriptomic analysis, digital spatial profiling, 16s-rRNA sequencing, and metabolomics—to understand the underlying mechanisms for the enhanced PFS to a median of 10.2 months and overall response rate of 47.5%. Multi-omics analysis highlighted the formation of tertiary lymphoid structures known to improve responses to immunotherapy, differential microbial patterns, and alterations in the metabolites in three key metabolism pathways that enhanced immune response in patients to produce a durable clinical response. These findings highlight the importance of the tumor microenvironment and the gut microbiome, along with its metabolites, in elevating the efficacy of the cocktail therapy in recurrent OC patients, thereby enhancing their survival and quality of life. Supported by ORIP (S10OD024973) and NCI.
Three Novel Neoplasms in Nancy Ma's Owl Monkeys (Aotus nancymaae)
Bacon et al., Veterinary Pathology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39692093/
Researchers have identified three previously unreported tumor types in male and female Nancy Ma’s owl monkeys (Aotus nancymaae), a nonhuman primate species that is rarely associated with tumors. Although past cases in owl monkeys were mostly linked to Herpesvirus saimiri–induced lymphoma, this research expands the understanding of tumor development in this species. These findings highlight potential new disease patterns and could inform veterinary care and biomedical research involving owl monkeys. Continued monitoring and investigation of tumors in New World primates are crucial for ensuring animal welfare and research integrity. Supported by ORIP (T32OD011083).
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.