Selected Grantee Publications
- Clear All
- 63 results found
- Alzheimer's Disease
- Cancer
Pembrolizumab and Cabozantinib in Recurrent Metastatic Head and Neck Squamous Cell Carcinoma: A Phase 2 Trial
Saba et al., Nature Medicine. 2023.
https://www.doi.org/10.1038/s41591-023-02275-x
A multicenter clinical trial was conducted in 33 evaluable (36 enrolled) patients with recurrent metastatic head and neck squamous cell carcinoma (RMHNSCC) on a regimen combining cabozantinib, a tyrosine kinase inhibitor, with the standard of care of anti–programmed cell death protein 1 agent pembrolizumab. Results showed that 17 patients (52%) exhibited partial response and 13 (39%) exhibited stable disease, with an overall clinical benefit rate of 91%. Median progression-free survival (PFS) was 14.6 months, and the 1-year PFS was 54%. The pembrolizumab and cabozantinib regimen was well tolerated in patients with RMHNSCC. The promising clinical benefit warrants further investigation. Supported by ORIP (S10OD021644), NCI, and NIDCR.
Mechanism of STMN2 Cryptic Splice-Polyadenylation and its Correction for TDP-43 Proteinopathies
Baughn et al., Science. 2023.
Loss of the RNA-binding protein TDP-43 from the nuclei of affected neurons is a hallmark of neurodegeneration in TDP-43 proteinopathies (e.g., amyotrophic lateral sclerosis, frontotemporal dementia). Loss of functional TDP-43 is accompanied by misprocessing of the stathmin-2 (STMN2) RNA precursor. Investigators determined the elements through which TDP‑43 regulates STMN2 pre‑mRNA processing and identified steric binding antisense oligonucleotides that are capable of restoring normal STMN2 protein and RNA levels. This approach is potentially applicable for human therapy. Supported by ORIP (U42OD010921), NIA, NCI, NIGMS, and NINDS.
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
Pancreatic Cancer Cells Upregulate LPAR4 in Response to Isolation Stress to Promote an ECM-Enriched Niche and Support Tumour Initiation
Wu et al., Nature Cell Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/36646789/
Understanding drivers of tumor initiation is critical for cancer therapy. Investigators found transient increase of lysophosphatidic acid receptor 4 (LPAR4) in pancreatic cancer cells exposed to environmental stress or chemotherapy. LPAR4 induced tumor initiation, stress tolerance, and drug resistance by downregulating miR-139-5p, a tumor suppressor, and upregulating fibronectin. These results indicate that LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix (ECM), allowing cells to survive isolation stress and compensate for the absence of stromal-derived factors by creating their own tumor-initiating niche. Supported by ORIP (K01OD030513, T32OD017863), NCI, and NHLBI.
Chronic TREM2 Activation Exacerbates Aβ-Associated Tau Seeding and Spreading
Jain et al., Journal of Experimental Medicine. 2023.
Using a mouse model for amyloidosis in which Alzheimer’s Disease (AD)–associated tau is injected into the brain to induce amyloid β (Aβ)–dependent tau seeding/spreading, investigators found that chronic administration of an activating triggering receptor expressed on myeloid cells 2 (TREM2) antibody increases microglial activation of dystrophic neurites surrounding Aβ plaques (NP) but increases NP-tau pathology and neuritic dystrophy without altering Aβ plaque burden. These data suggest that sustained microglial activation through TREM2 that does not result in strong myeloid removal might exacerbate Aβ-induced tau pathology, which could have important clinical implications. Supported by ORIP (S10OD021629) and NIA.
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.
Metabolic Transitions Define Spermatogonial Stem Cell Maturation
Voigt et al., Human Reproduction. 2022.
https://www.doi.org/10.1093/humrep/deac157
The spermatogonial stem cell (SSC) is the basis of male fertility. One potential option to preserve fertility in patients treated with anti-cancer therapy is isolation and laboratory culture of the juvenile SSC pool with subsequent transplantation to restore spermatogenesis. However, efficient culture of undifferentiated spermatogonia, including SSCs, in mammals other than rodents remains challenging. Investigators reported that the metabolic phenotype of prepubertal human spermatogonia is distinct from that of adult spermatogonia and that SSC development is characterized by specific metabolic transitions from oxidative phosphorylation to anaerobic metabolism. Supported by ORIP (R01OD016575) and NICHD.
Rbbp4 Loss Disrupts Neural Progenitor Cell Cycle Regulation Independent of Rb and Leads to Tp53 Acetylation and Apoptosis
Schultz-Rogers et al., Developmental Dynamics. 2022.
https://www.doi.org/10.1002/dvdy.467
Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression by cooperating with the Rb tumor suppressor to block cell cycle entry. The authors used genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers, and it is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. Rbbp4; Rb1 double mutants show an additive effect on the number of M phase cells. The study demonstrates that Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0, independent of Rb, and suggests that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival. Supported by ORIP (R24OD020166) and NIGMS.
Stromal P53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner
Wu et al., Molecular Cancer Research. 2022.
https://www.doi.org/10.1158/1541-7786.MCR-21-0960
Loss of stromal p53 function drives tumor progression in breast cancer, but the exact mechanisms have been relatively unexplored. Using mouse models, researchers demonstrated that loss of cancer-associated fibroblast (CAF) p53 enhances carcinoma formation driven by oncogenic KRAS G12D, but not ERBB2, in mammary epithelia. These results corresponded with increased tumor cell proliferation and DNA damage, as well as decreased apoptosis, in the KRAS G12D model. Furthermore, a gene cluster associated with CAF p53 deficiency was found to associate negatively with survival in microarray and heat map analyses. These data indicate that stromal p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately affects patient survival. Supported by ORIP (K01OD026527) and NCI.
Antibody-Peptide Epitope Conjugates for Personalized Cancer Therapy
Zhang et al., Cancer Research. 2022.
https://pubmed.ncbi.nlm.nih.gov/34965933/
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T cell viral immunity against tumor cells. Investigators developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Based on functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus in ovarian cancer patients, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. The streamlined and systemic approach includes assessing APEC function in vivo using a new zebrafish xenograft platform that facilitates high-resolution single-cell imaging to assess therapy responses and then validating top candidates using traditional mouse xenograft studies and primary patient samples. This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma. Supported by ORIP (R24OD016761).