Selected Grantee Publications
- Clear All
- 9 results found
- Pediatrics
- P51
- Genetics
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope–Specific Plasma Antibodies in Infant Rhesus Macaques
Vijayan et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.840976
An effective vaccine is needed to reduce HIV infections, particularly among younger people. The initiation of an HIV vaccine regimen in early life could allow the development of mature HIV‑specific antibody responses that protect against infection. The investigators compared the effects of two vaccine regimens in infant rhesus macaques (sex not specified). Both vaccines induced a rapid innate response, indicated by elevated inflammatory plasma cytokines and altered gene expression. By performing a network analysis, the investigators identified differentially expressed genes associated with B cell activation. These findings suggest that vaccine-induced immunity can be optimized by modulating specific antibody and T cell responses. Supported by ORIP (P51OD011107), NCI, NIAID, and NIDCR.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: A Model for Passive Immunotherapy During Breastfeeding
Rosenberg et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.00268-21
Preventing vertical transmission of HIV to newborns is an unmet medical need in resource poor countries. Using a breastfeeding macaque model with multiple simian-human immunodeficiency virus challenge, researchers assessed the protective efficacy of two human broadly neutralizing antibodies (bnAbs) against HIV, PGT121 and VRC07-523, which are produced by a plant expression system. Despite the transient presence of plasma viral RNA, the bnAbs prevented productive infection in all newborns with no sustained plasma viremia, compared to viral loads ranging from 103 to 5x108 in four untreated controls. Thus, plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
Postpubertal Spermatogonial Stem Cell Transplantation Restores Functional Sperm Production in Rhesus Monkeys Irradiated Before and After Puberty
Shetty et al., Andrology. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/andr.13033
Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). Prepubertal rhesus monkeys (n=6) were unilaterally castrated, and the remaining testes irradiated twice to insure loss of SSCs; the animals were treated with a vehicle or GnRH antagonist for 8 weeks (n=3/treatment). The cryopreserved prepubertal testicular tissue was allergenically transplanted into the intact testes of the monkeys after puberty. Recovery of viable donor epididymal sperm was observed in half the monkeys. These results illustrate that sperm production can be restored in primates by transplantation of testicular cells from cryopreserved untreated prepubertal testes into seminiferous tubules of the remaining testes. Supported by ORIP (P51OD011092), NICHD, and NCI.