Selected Grantee Publications
- Clear All
- 83 results found
- Cardiovascular
- Pediatrics
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.
Deep Learning-Based Framework for Cardiac Function Assessment in Embryonic Zebrafish from Heart Beating Videos
Naderi et al., Computers in Biology and Medicine. 2021.
https://www.sciencedirect.com/science/article/pii/S0010482521003590
Zebrafish is a powerful model system for a host of biological investigations, cardiovascular studies, and genetic screening. However, the current methods for quantifying and monitoring zebrafish cardiac functions involve tedious manual work and inconsistent estimations. Naderi et al. developed a Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of wildtype and cardiomyopathy mutant zebrafish embryos. The framework could be widely applicable with any laboratory resources, and the automatic feature holds promise to enable efficient, consistent, and reliable processing and analysis capacity. Supported by ORIP (R44OD024874)
Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: A Model for Passive Immunotherapy During Breastfeeding
Rosenberg et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.00268-21
Preventing vertical transmission of HIV to newborns is an unmet medical need in resource poor countries. Using a breastfeeding macaque model with multiple simian-human immunodeficiency virus challenge, researchers assessed the protective efficacy of two human broadly neutralizing antibodies (bnAbs) against HIV, PGT121 and VRC07-523, which are produced by a plant expression system. Despite the transient presence of plasma viral RNA, the bnAbs prevented productive infection in all newborns with no sustained plasma viremia, compared to viral loads ranging from 103 to 5x108 in four untreated controls. Thus, plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
SARS-CoV-2 Vaccines Elicit Durable Immune Responses in Infant Rhesus Macaques
Garrido et al., Science Immunology. 2021.
https://immunology.sciencemag.org/content/6/60/eabj3684
The immunogenicity of two SARS-CoV-2 vaccines was evaluated in both sexes of infant rhesus macaques (n=8/group). Neither vaccine, stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion, induced adverse effects. Both elicited high magnitude neutralizing antibody titers peaking at week 6. S-specific T cell responses were dominated by IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. These data provide proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity to decrease transmission of COVID-19. Supported by ORIP (P51OD011107), NIAID, and NCI.
Loss of Gap Junction Delta-2 (GJD2) Gene Orthologs Leads to Refractive Error in Zebrafish
Quint et al., Communications Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34083742/
Myopia is the most common developmental disorder of juvenile eyes. Although little is known about the functional role of GJD2 in refractive error development, the authors find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish cause changes in eye biometry and refractive status. Their immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin; its depletion leads to hyperopia and electrophysiological retina changes. They found a lenticular role; lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. The results provide functional evidence of a link between gjd2 and refractive error. Supported by ORIP (R24OD026591), NIGMS, and NINDS.
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
Postpubertal Spermatogonial Stem Cell Transplantation Restores Functional Sperm Production in Rhesus Monkeys Irradiated Before and After Puberty
Shetty et al., Andrology. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/andr.13033
Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). Prepubertal rhesus monkeys (n=6) were unilaterally castrated, and the remaining testes irradiated twice to insure loss of SSCs; the animals were treated with a vehicle or GnRH antagonist for 8 weeks (n=3/treatment). The cryopreserved prepubertal testicular tissue was allergenically transplanted into the intact testes of the monkeys after puberty. Recovery of viable donor epididymal sperm was observed in half the monkeys. These results illustrate that sperm production can be restored in primates by transplantation of testicular cells from cryopreserved untreated prepubertal testes into seminiferous tubules of the remaining testes. Supported by ORIP (P51OD011092), NICHD, and NCI.
Identification of Basp1 as a Novel Angiogenesis-regulating Gene by Multi-Model System Studies
Khajavi et al., FASEB Journal. 2021.
https://pubmed.ncbi.nlm.nih.gov/33899275/
The authors previously used genetic diversity in inbred mouse strains to identify quantitative trait loci (QTLs) responsible for differences in angiogenic response. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. To investigate its role in vivo, they knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. They further showed that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results provide the first in vivo evidence to indicate the role of basp1 as an angiogenesis-regulating gene. Supported by ORIP (R24OD017870) and NEI.