Selected Grantee Publications
- Clear All
- 14 results found
- Cancer
- Pediatrics
- 2021
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
An NR2F1-Specific Agonist Suppresses Metastasis by Inducing Cancer Cell Dormancy
Khalil et al., The Journal of Experimental Medicine. 2021.
Researchers described the discovery of a nuclear receptor NR2F1 antagonist that specifically activates dormancy programs in malignant cells. Agonist treatment resulted in a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest in multiple human cell lines, as well as patient-derived organoids. This effect was lost when NR2F1 was knocked out. In mice, agonist treatment resulted in inhibition of lung metastasis of head and neck squamous cell carcinomas, even after cessation of the treatment. This work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis. Supported by ORIP (S10OD018522 and S10OD026880) and others.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Sexual Dimorphic Impact of Adult-Onset Somatopause on Life Span and Age-Induced Osteoarthritis
Poudel et al., Aging Cell. 2021.
https://pubmed.ncbi.nlm.nih.gov/?term=Poudel%20SB&cauthor_id=34240807
Osteoarthritis (OA) is a major cause of disability worldwide. In humans, the age-associated decline in growth hormone (GH) levels was hypothesized to play a role in the etiology of OA. Investigators studied the impact of adult-onset isolated GH deficiency (AOiGHD) on the life span and skeletal integrity in aged mice. Reductions in GH during adulthood were associated with extended life span and reductions in body temperature in female mice only. However, end-of-life pathology revealed high levels of lymphomas in both sexes, independent of GH status. Skeletal characterization revealed increases in OA severity in AOiGHD mice. In conclusion, while their life span increased, AOiGHD female mice’s health span was compromised by high-grade lymphomas and the development of severe OA. In contrast, AOiGHD males, which did not show extended life span, showed an overall low grade of lymphomas but exhibited significantly decreased health span, evidenced by increased OA severity. Supported by ORIP (S10OD010751) and others.
Advancing Human Disease Research with Fish Evolutionary Mutant Models
Beck et al., Trends in Genetics. 2021.
https://pubmed.ncbi.nlm.nih.gov/34334238/
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. They have improved our understanding of cancer, diabetes, and aging. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease. Supported by ORIP (R01OD011116), NIA, NIDA, and NIGMS.
Phase Separation Drives Aberrant Chromatin Looping and Cancer Development
Ahn et al., Nature. 2021.
https://doi.org/10.1038/s41586-021-03662-5
How unstructured intrinsically disordered regions (IDRs) contribute to oncogenesis is elusive. Using an Orbitrap fusion tribrid mass spectrometer, investigators show that IDRs contained within NUP98–HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias, are essential for establishing liquid–liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. LLPS of NUP98–HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad “super-enhancer”-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. This report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumor transformation. Supported by ORIP (S10OD018445).
Protection of Newborn Macaques by Plant-Derived HIV Broadly Neutralizing Antibodies: A Model for Passive Immunotherapy During Breastfeeding
Rosenberg et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.00268-21
Preventing vertical transmission of HIV to newborns is an unmet medical need in resource poor countries. Using a breastfeeding macaque model with multiple simian-human immunodeficiency virus challenge, researchers assessed the protective efficacy of two human broadly neutralizing antibodies (bnAbs) against HIV, PGT121 and VRC07-523, which are produced by a plant expression system. Despite the transient presence of plasma viral RNA, the bnAbs prevented productive infection in all newborns with no sustained plasma viremia, compared to viral loads ranging from 103 to 5x108 in four untreated controls. Thus, plant-expressed antibodies show promise as passive immunoprophylaxis in a breastfeeding model in newborns. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
SARS-CoV-2 Vaccines Elicit Durable Immune Responses in Infant Rhesus Macaques
Garrido et al., Science Immunology. 2021.
https://immunology.sciencemag.org/content/6/60/eabj3684
The immunogenicity of two SARS-CoV-2 vaccines was evaluated in both sexes of infant rhesus macaques (n=8/group). Neither vaccine, stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion, induced adverse effects. Both elicited high magnitude neutralizing antibody titers peaking at week 6. S-specific T cell responses were dominated by IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. These data provide proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity to decrease transmission of COVID-19. Supported by ORIP (P51OD011107), NIAID, and NCI.
Loss of Gap Junction Delta-2 (GJD2) Gene Orthologs Leads to Refractive Error in Zebrafish
Quint et al., Communications Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34083742/
Myopia is the most common developmental disorder of juvenile eyes. Although little is known about the functional role of GJD2 in refractive error development, the authors find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish cause changes in eye biometry and refractive status. Their immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin; its depletion leads to hyperopia and electrophysiological retina changes. They found a lenticular role; lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. The results provide functional evidence of a link between gjd2 and refractive error. Supported by ORIP (R24OD026591), NIGMS, and NINDS.
Single-Cell Protein Activity Analysis Identifies Recurrence-Associated Renal Tumor Macrophages
Obradovic et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.04.038
Post-surgery course of clear cell renal carcinoma (ccRCC) is mixed because of the heterogeneity of the disease. Using high-performance computing cluster and storage systems, investigators established an inclusive ccRCC tumor microenvironment (TME) map by using single-cell RNA sequencing data of subpopulations of tumor and tumor-adjacent tissues. Analysis of the data identified key TME subpopulations as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant cell populations. Specifically, the study uncovered a tumor-specific macrophage subpopulation, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, markers of this subpopulation were significantly enriched in tumors from patients who recurred following surgery. Supported by ORIP (S10OD012351, S10OD021764) and others.