Selected Grantee Publications
- Clear All
- 2 results found
- Women's Health
- CRISPR
- Spectrometry
Commentary: The International Mouse Phenotyping Consortium: High-Throughput In Vivo Functional Annotation of the Mammalian Genome
Lloyd, Mammalian Genome. 2024.
https://pubmed.ncbi.nlm.nih.gov/39254744
The International Mouse Phenotyping Consortium (IMPC), a collectively governed consortium of 21 academic research institutions across 15 countries on 5 continents, represents a groundbreaking approach in genetics and biomedical research. Its goal is to create a comprehensive catalog of mammalian gene function that is freely available and equally accessible to the global research community. So far, the IMPC has uncovered the function of thousands of genes about which little was previously known. By 2027, when the current round of funding expires, the IMPC will have produced and phenotyped nearly 12,000 knockout mouse lines representing approximately 60% of the human orthologous genome in mice. This new knowledge has produced numerous insights about the role of genes in health and disease, including informing the genetic basis of rare diseases and positing gene product influences on common diseases. However, as IMPC nears the end of the current funding cycle, its path forward remains unclear. Supported by ORIP (UM1OD023221).
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.