Selected Grantee Publications
- Clear All
- 14 results found
- Microbiome
- Women's Health
- 2023
Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development
Sharpton et al., Zebrafish. 2023.
https://pubmed.ncbi.nlm.nih.gov/38117219/
Standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, the authors presented findings from a 7-month diet test study conducted across three aquatic research facilities: Zebrafish International Resource Center (University of Oregon), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (Texas State University). They compared the effects of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and medaka), and three zebrafish wild-type strains. They reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Supported by ORIP (P40OD011021, R24OD011120, and R24OD010998) and NICHD.
Biphasic Decay of Intact SHIV Genomes Following Initiation of Antiretroviral Therapy Complicates Analysis of Interventions Targeting the Reservoir
Kumar et al., PNAS. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614214/
The latent HIV-1 reservoir persists with antiretroviral therapy (ART), and assays for quantifying intact proviruses in nonhuman primate models are needed. Researchers used a simian–human immunodeficiency virus (SHIV) intact proviral DNA assay to describe viral decay during the first year of ART in female rhesus macaques. Their results suggest that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase and a slower second phase. These findings can provide insight for future studies using SHIV models, as well as new cure interventions. Supported by ORIP (R01OD011095) and NIAID.
Effects of Pulsatile Intravenous Follicle-Stimulating Hormone Treatment on Ovarian Function in Women With Obesity
Luu et al., Fertility and Sterility. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276947/
By performing intravenous (IV) administration of pulsatile recombinant follicle-stimulating hormone (FSH), researchers established conditions for effective hypothalamic suppression in women with normal and high body mass index (BMI). In women with obesity, the treatment resulted in E2 and inhibin B levels comparable to those in normal-weight women. This work offers a potential strategy to mitigate some of the adverse effects of high BMI on fertility, assisted reproduction, and pregnancy outcomes. Supported by ORIP (K01OD026526), NIA, and NICHD.
Large-Scale Production of Human Blastoids Amenable to Modeling Blastocyst Development and Maternal-Fetal Crosstalk
Yu et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S1934590923002850?via%3Dihub=
Human blastoids provide a valuable model to study early human development and implantation with reduced genetic heterogeneity between samples. Investigators reported a protocol for efficient generation of high-fidelity human blastoids from naïve pluripotent stem cells. The similarities between blastoids and blastocysts in signaling activities—demonstrated using single-cell RNA sequencing—support the use of blastoids to model lineage differentiation and cavity formation. Additionally, endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids demonstrated the capability to model maternal–fetal crosstalk. The protocol will facilitate broader use of human blastoids as an ethical model for human blastocysts. Supported by ORIP (S10OD028630) and others.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
Assessment of Various Standard Fish Diets on Gut Microbiome of Platyfish Xiphophorus maculatus
Soria et al., Journal of Experimental Zoology Part B. 2023.
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23218
Diet is an important factor affecting experimental reproducibility and data integration across studies. Reference diets for nontraditional animal models are needed to control diet-induced variation. In a study of the dietary impacts on the gut microbiome, researchers found that switching from a custom diet to a zebrafish diet altered the Xiphophorus gut microbiome. Their findings suggest that diets developed specifically for zebrafish can affect gut microbiome composition and might not be optimal for Xiphophorus. Supported by ORIP (R24OD011120, R24OD031467, P40OD011021) and NCI.
The Contribution of Maternal Oral, Vaginal, and Gut Microbiota to the Developing Offspring Gut
Russell et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-40703-7#Ack1
The maturation process of the gut microbiota (GM) is an essential process for life-long health that is defined by the acquisition and colonization of microorganisms in the gut and the subsequent immune system induction that occurs during early life. To address significant knowledge gaps in this area, investigators characterized the neonatal fecal and ileal microbiota of entire litters of mice at multiple pre-weaning time-points. Results indicated that specific-pathogen-free mouse microbiotas undergo a dynamic and somewhat characteristic maturation process, culminating by roughly two to three weeks of age. Prior to that, the neonatal GM is more similar in composition to the maternal oral microbiota, as opposed to the vaginal and fecal microbiotas. Further studies are needed to expand our knowledge regarding the effect of these developmental exposures on host development. Supported by ORIP (U42OD010918, R03OD028259).
Disentangling the Link Between Zebrafish Diet, Gut Microbiome Succession, and Mycobacterium chelonae Infection
Sieler et al., Animal Microbiome. 2023.
https://pubmed.ncbi.nlm.nih.gov/37563644/
Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, the authors sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. They report that diet drives the successional development of the gut microbiome, as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet. Supported by ORIP (R24OD010998) and NIEHS.
A Germ-Free Humanized Mouse Model Shows the Contribution of Resident Microbiota to Human-Specific Pathogen Infection
Wahl et al., Nature Biotechnology. 2023.
https://www.nature.com/articles/s41587-023-01906-5
Germ-free (GF) mice are of limited value in the study of human-specific pathogens because they do not support their replication. In this report, investigators developed a GF humanized mouse model using the bone marrow–liver–thymus platform to provide a robust and flexible in vivo model that can be used to study the role of resident microbiota in human health and disease. They demonstrated that resident microbiota promote viral acquisition and pathogenesis by using two human-specific pathogens, Epstein–Barr virus and HIV. Supported by ORIP (P40OD010995), FIC, NIAID, NCI, and NIDDK.
p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy
Faget et al., Cancer Discovery. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238649/
This study emphasizes the importance of the metastatic tumor microenvironment in metastatic breast cancer growth and the identification of effective antimetastatic therapies. Using a stromal labeling approach and single-cell RNA sequencing, the authors showed that a combination of p38MAPK inhibition (p38i) and anti-OX40 synergistically reduced metastatic tumor growth and increased overall survival. Further engagement of cytotoxic T cells cured all metastatic disease in mice and produced durable immunologic memory. The Cancer Genome Atlas data analysis revealed that patients with p38i metastatic stromal signature and a high tumor mutational burden (TMB) had increased overall survival. These findings suggest that patients with high TMB would benefit the most from the p38i plus anti-OX40 approach. Supported by ORIP (S10OD028483), NIA, NCI, and NIGMS.