Selected Grantee Publications
- Clear All
- 11 results found
- Microbiome
- Women's Health
- 2022
Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients Is Associated with Microbial Translocation and Bacteremia
Bernard-Raichon et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33395-6
The investigators demonstrated that SARS-CoV-2 infection induced gut microbiome dysbiosis in male mice. Samples collected from human COVID-19 patients of both sexes also revealed substantial gut microbiome dysbiosis. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicated that bacteria might translocate from the gut into the systemic circulation of COVID-19 patients. These results were consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19. Supported by ORIP (S10OD021747), NCI, NHLBI, NIAID, and NIDDK.
Sociability in a Non-Captive Macaque Population Is Associated with Beneficial Gut Bacteria
Johnson et al., Frontiers in Microbiology. 2022.
https://www.doi.org/10.3389/fmicb.2022.1032495
Social connections are essential for good health and well-being in social animals, such as humans and other primates. Increasingly, evidence suggests that the gut microbiome—through the so-called “gut–brain axis”—plays a key role in physical and mental health and that bacteria can be transmitted socially (e.g., through touch). Here, the authors explore behavioral variation in non‑captive rhesus macaques of both sexes with respect to the abundance of specific bacterial genera. Their results indicate that microorganisms whose abundance varies with individual social behavior also have functional links to host immune status. Overall, these findings highlight the connections between social behavior, microbiome composition, and health in an animal population. Supported by ORIP (P40OD012217) and NIMH.
Reduced Alcohol Preference and Intake after Fecal Transplant in Patients with Alcohol Use Disorder Is Transmissible to Germ-Free Mice
Wolstenholme et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-34054-6
Alcohol use disorder is a major cause of reduced life expectancy worldwide, and this misuse has increased exponentially during the COVID-19 pandemic. Fecal microbiota transplant has been shown previously to reduce alcohol craving in humans with cirrhosis. Here, the investigators report that the reduction in craving and alcohol preference is transmissible to male germ-free mice only when live bacteria—and not germ-free supernatants—are used for colonization. This differential colonization was associated with alterations in the gut immune–inflammatory response through short-chain fatty acids. Supported by ORIP (P40OD010995), NIAAA, NIDDK, and NIMH.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
X Chromosome Agents of Sexual Differentiation
Arnold et al., Nature Reviews Endocrinology. 2022.
https://www.doi.org/10.1038/s41574-022-00697-0
Many diseases affect one sex disproportionately. A major goal of biomedical research is to understand which sex-biasing factors influence disease severity and to develop therapeutic strategies to target these factors. Two groups of such agents are sex chromosome genes and gonadal hormones. Researchers use the “four core genotypes” model to enable comparisons among animals with different sex chromosomes but the same type of sex hormones, which allows investigators to distinguish disease mechanisms influenced by the sex chromosomes. Supported by ORIP (R01OD030496, R21OD026560), NICHD, NIDDK, and NHLBI.
Targeted Suppression of Human IBD-Associated Gut Microbiota Commensals by Phage Consortia for Treatment of Intestinal Inflammation
Federici et al., Cell. 2022.
https://www.doi.org/10.1016/j.cell.2022.07.003
Human gut commensals increasingly are suggested to affect noncommunicable diseases, such as inflammatory bowel disease (IBD), yet their targeted suppression remains an unmet challenge. In this report, investigators identified a clade of Klebsiella pneumoniae (Kp) strains—featuring a unique antibiotic resistance and mobilome signature—that is associated strongly with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice of both sexes enhances intestinal inflammation. An orally administered combination phage therapy targeting sensitive and resistant IBD-associated Kp clade members enables effective Kp suppression, suggesting the feasibility of avoiding antibiotic resistance while effectively inhibiting noncommunicable disease–contributing pathobionts. Supported by ORIP (P40OD010995) and NIDDK.
Stromal P53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner
Wu et al., Molecular Cancer Research. 2022.
https://www.doi.org/10.1158/1541-7786.MCR-21-0960
Loss of stromal p53 function drives tumor progression in breast cancer, but the exact mechanisms have been relatively unexplored. Using mouse models, researchers demonstrated that loss of cancer-associated fibroblast (CAF) p53 enhances carcinoma formation driven by oncogenic KRAS G12D, but not ERBB2, in mammary epithelia. These results corresponded with increased tumor cell proliferation and DNA damage, as well as decreased apoptosis, in the KRAS G12D model. Furthermore, a gene cluster associated with CAF p53 deficiency was found to associate negatively with survival in microarray and heat map analyses. These data indicate that stromal p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately affects patient survival. Supported by ORIP (K01OD026527) and NCI.
Large Comparative Analyses of Primate Body Site Microbiomes Indicate That the Oral Microbiome Is Unique Among All Body Sites and Conserved Among Nonhuman Primates
Asangba et al., Microbiology Spectrum. 2022.
https://www.doi.org/10.1128/spectrum.01643-21
Microbiomes are critical to host health and disease, but large gaps remain in the understanding of the determinants, coevolution, and variation of microbiomes across body sites and host species. Thus, researchers conducted the largest comparative study of primate microbiomes to date by investigating microbiome community composition at eight distinct body sites in 17 host species. They found that the oral microbiome is unique in exhibiting notable similarity across primate species while being distinct from the microbiomes of all other body sites and host species. This finding suggests conserved oral microbial niche specialization, despite substantial dietary and phylogenetic differences among primates. Supported by ORIP (P51OD010425, P51OD011107, P40OD010965, R01OD010980), NIA, NIAID, and NICHD.
Common and Divergent Features of T Cells From Blood, Gut, and Genital Tract of Antiretroviral Therapy–Treated HIV+ Women
Xie et al., Journal of Immunology. 2022.
https://www.doi.org/10.4049/jimmunol.2101102
T cells residing in mucosal tissues play important roles in homeostasis and defense against microbial pathogens, but how organ system environments affect the properties of resident T cells is relatively unknown. Researchers phenotyped T cells in the gut and reproductive tract using blood and tissue samples from women with HIV who have achieved viral suppression via antiretroviral therapy. The T cells exhibited differing expression of CD69 and CD103 markers, whereas resident memory CD8+ T cells from the female reproductive tract expressed PD1 preferentially. Additionally, CXCR4+ T inflammatory mucosal cells expressed multiple chemokine receptors differentially. These results suggest that T cells take on distinct properties in different mucosal sites, which allows them to tailor activities to their surrounding milieu. This study offers important insights for reproductive medicine in women. Supported by ORIP (S10OD018040), NHLBI, NIAID, and NIDDK.
Antibody-Peptide Epitope Conjugates for Personalized Cancer Therapy
Zhang et al., Cancer Research. 2022.
https://pubmed.ncbi.nlm.nih.gov/34965933/
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T cell viral immunity against tumor cells. Investigators developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Based on functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus in ovarian cancer patients, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. The streamlined and systemic approach includes assessing APEC function in vivo using a new zebrafish xenograft platform that facilitates high-resolution single-cell imaging to assess therapy responses and then validating top candidates using traditional mouse xenograft studies and primary patient samples. This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma. Supported by ORIP (R24OD016761).