Selected Grantee Publications
- Clear All
- 84 results found
- Vaccines/Therapeutics
- Genetics
Comparison of the Immunogenicity of mRNA-Encoded and Protein HIV-1 Env-ferritin Nanoparticle Designs
Mu et al., Journal of Virology. 2024.
https://journals.asm.org/doi/10.1128/jvi.00137-24
Inducing broadly neutralizing antibodies (bNAbs) against HIV-1 remains a challenge because of immune system limitations. This study compared the immunogenicity of mRNA-encoded membrane-bound envelope (Env) gp160 to HIV-1 Env-ferritin nanoparticle (NP) technology in inducing anti-HIV-1 bNAbs. Membrane-bound mRNA encoding gp160 was more immunogenic than the Env-ferritin NP design in DH270 UCA KI mice, but at lower doses. These results suggest further analysis of mRNA design expression and low-dose immunogenicity studies are necessary for anti-HIV-1 bNAbs. Supported by ORIP (P40OD012217, U42OD021458) and NIAID.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
CD8+ T Cell Targeting of Tumor Antigens Presented by HLA-E
Iyer, Science Advances. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086602/
Researchers have hypothesized that human leukocyte antigen-E (HLA-E)–positive cancer cells could be targeted by HLA-E–restricted CD8+ T cells. In this study, the authors assessed whether major histocompatibility complex E (MHC-E) expression by cancer cells can be targeted for MHC-E–restricted T cell control. Using male rhesus macaques, they found that a cytomegalovirus can be used as a vector to generate specific immune cells that can target cancer cells. The authors conclude that targeting HLA-E with restricted, specific CD8+ T cells could offer a new approach for immunotherapy of prostate cancer. Overall, this study supports the concept of a cancer vaccine. Supported by ORIP (P51OD011092) and NIAID.
Potent HPIV3-Neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity
Abu-Shmais et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38488511/
Human parainfluenza virus 3 fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing antibodies that inhibit infection. More work is needed to understand these dynamics. Researchers characterized the genetic signatures, epitope specificity, neutralization potential, and publicness of HPIV3-specific antibodies identified across multiple individuals. From this work, they identified 12 potently neutralizing antibodies targeting three nonoverlapping epitopes on HPIV3 F. Six of the antibodies used immunoglobulin heavy variable gene, IGHV 5-51. These antibodies used different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. These findings help elucidate the genetic and functional characteristics of HPIV3-neutralizing antibodies and indicate the existence of a reproducible H chain variable–dependent antibody response associated with VL and CDRH3 promiscuity. Supported by ORIP (K01OD036063), NCATS, NCI, NEI, NIAID, and NIDDK.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
Intestinal Epithelial Adaptations to Vertical Sleeve Gastrectomy Defined at Single-Cell Resolution
Koch-Laskowski et al., Genomics. 2024.
https://pubmed.ncbi.nlm.nih.gov/38309446/
Perturbations in the intestinal epithelium have been linked to the pathogenesis of metabolic disease. Bariatric procedures, such as vertical sleeve gastrectomy (VSG), cause gut adaptations that induce robust metabolic improvements. Using a male mouse model, the authors assessed the effects of VSG on different cell lineages of the small intestinal epithelium. They show that Paneth cells display increased expression of the gut peptide Reg3g after VSG. Additionally, VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, this work demonstrates how adaptations among specific cell types can affect gut epithelial homeostasis; these findings can help researchers develop targeted, less invasive treatment strategies for metabolic disease. Supported by ORIP (F30OD031914), NCI, and NIDDK.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.
Preclinical Safety and Biodistribution of CRISPR Targeting SIV in Non-Human Primates
Burdo et al., Gene Therapy. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11090835/
Nonhuman primates have served as a valuable resource for evaluating novel eradication and cure strategies for HIV infection. Using a male rhesus macaque model, researchers demonstrated the safety and utility of CRISPR gene-editing technology for targeting integrated simian immunodeficiency virus (SIV). Their work suggests that a single intravenous inoculation for HIV gene editing can be utilized to reach viral reservoirs throughout the body. Additionally, no off-target effects or abnormal pathology were observed. Together, these findings support the continued development of HIV eradicative cure strategies using CRISPR technology in humans. Supported by ORIP (P40OD012217, U42OD021458).