Selected Grantee Publications
- Clear All
- 30 results found
- Vaccines/Therapeutics
- S10 [SIG, BIG, HEI]
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
Integrative Multi-omics Analysis Uncovers Tumor-Immune-Gut Axis Influencing Immunotherapy Outcomes in Ovarian Cancer
Rosario et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39638782
Recurrent ovarian cancer (OC) is the deadliest gynecological malignancy, with a 5-year survival rate of 50% and a median progression-free survival (PFS) of 1.9 to 2.1 months. A trial cohort of 40 patients was treated with a combination of the anti-PD-1 pembrolizumab, the anti–vascular endothelial growth factor bevacizumab, and cyclophosphamide. The investigators conducted a multi-omics analysis—including transcriptomic analysis, digital spatial profiling, 16s-rRNA sequencing, and metabolomics—to understand the underlying mechanisms for the enhanced PFS to a median of 10.2 months and overall response rate of 47.5%. Multi-omics analysis highlighted the formation of tertiary lymphoid structures known to improve responses to immunotherapy, differential microbial patterns, and alterations in the metabolites in three key metabolism pathways that enhanced immune response in patients to produce a durable clinical response. These findings highlight the importance of the tumor microenvironment and the gut microbiome, along with its metabolites, in elevating the efficacy of the cocktail therapy in recurrent OC patients, thereby enhancing their survival and quality of life. Supported by ORIP (S10OD024973) and NCI.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Effect of Metabolic Status on Response to SIV Infection and Antiretroviral Therapy in Nonhuman Primates
Webb et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39115937
This study examines how metabolic health influences the efficacy of antiretroviral therapy (ART). Using lean and obese male rhesus macaques, researchers explored the progression of simian immunodeficiency virus (SIV) infection. Obese macaques with metabolic dysfunction experienced more rapid disease progression and had a diminished response to ART than lean macaques. This study suggests metabolic health plays a significant role in HIV progression and treatment outcomes, highlighting the importance of managing metabolic conditions in people with HIV. Supported by ORIP (P51OD011092, S10OD025002), NIAID, and NIDDK.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Targeting Pancreatic Cancer Metabolic Dependencies Through Glutamine Antagonism
Encarnación-Rosado et al., Nature Cancer. 2024.
https://pubmed.ncbi.nlm.nih.gov/37814010/
Pancreatic ductal adenocarcinoma (PDAC) cells thrive in the austere, complex tumor microenvironment by reprogramming their metabolism and relying on scavenging pathways, but more work is needed to translate this knowledge into clinically relevant therapeutic interventions. Investigators demonstrated that treating PDAC cells with a Gln antagonist, 6‑diazo-5-oxo-l-norleucine (DON), caused a metabolic crisis by globally impairing Gln metabolism, resulting in a significant decrease in proliferation. They observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. Combining this therapeutic with an extracellular-signal-regulated kinase (or ERK) signaling pathway inhibitor could further improve it. Supported by ORIP (S10OD021747), NCI, and NIAID.
Vpr Attenuates Antiviral Immune Responses and Is Critical for Full Pathogenicity of SIVmac239 in Rhesus Macaques
Laliberté et al., iScience. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679897/
The accessory viral protein R (Vpr) exhibits multilayered functions, and more work is needed to understand its roles in viral replication, immune evasion, and pathogenicity in vivo. Using male and female rhesus macaques, researchers examined how deletion of vpr affects simian immunodeficiency virus (SIV) replication kinetics, innate immune activation, B- and T-cell responses, and neutralizing activity. They found that lack of Vpr delays and attenuates viral replication during acute infection, allowing most animals to mount efficient and persisting immune responses and higher levels of neutralizing antibodies. Overall, these results suggest that Vpr promotes viral replication and innate immune evasion during acute SIV infection. Supported by ORIP (P51OD011133, P51OD011132, S10OD026799).
Lymphoid Tissues Contribute to Plasma Viral Clonotypes Early After Antiretroviral Therapy Interruption in SIV-Infected Rhesus Macaques
Solis-Leal et al., Science Translational Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/38091409/
Researchers are interested in better understanding the sources, timing, and mechanisms of HIV rebound that occurs after interruption of antiretroviral therapy (ART). Using rhesus macaques (sex not specified), investigators tracked barcoded simian immunodeficiency virus (SIV) clonotypes over time and among tissues. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. Additionally, the authors reported that CD4+ T cells harbored the most viral RNA after ART interruption. These tissues are likely to contribute to viral reactivation and rebound after ART interruption, but further studies are needed to evaluate the relative potential contributions from other tissues and organs. Supported by ORIP (P51OD011104, P51OD011133, S10OD028732, S10OD028653), NCI, NIMH, and NINDS.