Selected Grantee Publications
- Clear All
- 4 results found
- Vaccines/Therapeutics
- R21
Probiotic Therapy During Vaccination Alters Antibody Response to Simian-Human Immunodeficiency Virus Infection But Not to Commensals
Wilson et al., AIDS Research and Human Retroviruses. 2023.
https://www.doi.org/10.1089/AID.2022.0123
Strategies to boost vaccine-induced mucosal humoral responses are critical to developing an HIV-1 vaccine, and probiotic supplementation could help boost antibody responses. Researchers analyzed antibody titers to explore this topic in rhesus macaques (sex not specified) infected with simian–human immunodeficiency virus (SHIV). They reported that probiotic treatment during vaccination led to delayed kinetics in the circulating HIV-specific IgA response after breakthrough SHIV infection. These findings highlight the potential of probiotic supplementation for reducing IgA-specific HIV antibodies in the plasma, which could help reduce HIV acquisition in vaccinated individuals. Supported by ORIP (P51OD011104, R21OD031435) and NIAID.
In Vivo MRI Is Sensitive to Remyelination in a Nonhuman Primate Model of Multiple Sclerosis
Donadieu et al., eLife. 2023.
https://pubmed.ncbi.nlm.nih.gov/37083540/
Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a model for studying inflammatory demyelination in multiple sclerosis (MS). Researchers investigated the feasibility and sensitivity of magnetic resonance imaging (MRI) in characterizing remyelination, a crucial step to recover from MS. Investigators demonstrated that multisequence 7T MRI could detect spontaneous remyelination in marmoset EAE at high statistical sensitivity and specificity in vivo. This study suggests that in vivo MRI can be used for preclinical testing of therapeutic remyelinating agents for MS. Supported by ORIP (R21OD030163) and NINDS.
PGRN Deficiency Exacerbates, Whereas a Brain Penetrant PGRN Derivative Protects, GBA1 Mutation–Associated Pathologies and Diseases
Zhao et al., Proc Natl Acad Sci USA. 2023.
https://www.pnas.org/doi/10.1073/pnas.2210442120
Mutations in GBA1 are associated with Gaucher disease (GD) and are also genetic risks in developing Parkinson’s disease (PD). Investigators created a mouse model and demonstrated that progranulin (PGRN) deficiency in Gba1 mutant mice caused early onset and exacerbated GD phenotypes, leading to substantial increases in substrate accumulation and inflammation in visceral organs and the central nervous system. These in vivo and ex vivo data demonstrated that PGRN plays a crucial role in the initiation and progression. In addition, the mouse model provides a clinically relevant system for testing therapeutic approaches for GD and PD. Supported by ORIP (R21OD033660), NIAMS, and NINDS.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.