Selected Grantee Publications
- Clear All
- 3 results found
- Cardiovascular
- Vaccines/Therapeutics
- R43/R44 [SBIR]
A Novel Wireless ECG System for Prolonged Monitoring of Multiple Zebrafish for Heart Disease and Drug Screening Studies
Le et al., Biosensors and Bioelectronics. 2022.
https://pubmed.ncbi.nlm.nih.gov/34801796/
Zebrafish and their mutant lines have been extensively used in cardiovascular studies. In the current study, the novel system Zebra II is presented for prolonged electrocardiogram (ECG) acquisition and analysis for multiple zebrafish within controllable working environments. The Zebra II is composed of a perfusion system, apparatuses, sensors, and an in-house electronic system. First, the Zebra II is validated in comparison with a benchmark system, namely iWORX, through various experiments. The validation displayed comparable results in terms of data quality and ECG changes in response to drug treatment. The effects of anesthetic drugs and temperature variation on zebrafish ECG were subsequently investigated in experiments that need real-time data assessment. The Zebra II's capability of continuous anesthetic administration enabled prolonged ECG acquisition up to 1 h compared to that of 5 min in existing systems. The novel cloud-based automated analysis with data obtained from four fish further provided a useful solution for combinatorial experiments and helped save significant time and effort. The system showed robust ECG acquisition and analytics for various applications, including arrhythmia in sodium-induced sinus arrest, temperature-induced heart rate variation, and drug-induced arrhythmia in Tg(SCN5A-D1275N) mutant and wildtype fish. The multiple channel acquisition also enabled the implementation of randomized controlled trials on zebrafish models. The developed ECG system holds promise and solves current drawbacks in order to greatly accelerate drug screening applications and other cardiovascular studies using zebrafish. Supported by ORIP (R44OD024874) and NHLBI.
Deep Learning-Based Framework for Cardiac Function Assessment in Embryonic Zebrafish from Heart Beating Videos
Naderi et al., Computers in Biology and Medicine. 2021.
https://www.sciencedirect.com/science/article/pii/S0010482521003590
Zebrafish is a powerful model system for a host of biological investigations, cardiovascular studies, and genetic screening. However, the current methods for quantifying and monitoring zebrafish cardiac functions involve tedious manual work and inconsistent estimations. Naderi et al. developed a Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of wildtype and cardiomyopathy mutant zebrafish embryos. The framework could be widely applicable with any laboratory resources, and the automatic feature holds promise to enable efficient, consistent, and reliable processing and analysis capacity. Supported by ORIP (R44OD024874)
Acoustofluidic Rotational Tweezing Enables High-Speed Contactless Morphological Phenotyping of Zebrafish Larvae
Chen et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33602914/
These authors demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae enabling multispectral imaging of the zebrafish body and internal organs. They developed a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation. With its contactless nature and advantages in speed and automation, the acoustofluidic rotational tweezing system has the potential to be a valuable asset for developmental biology and pre-clinical drug development in pharmacology. Supported by ORIP (R43OD024963), NCI, and NIGMS.