Selected Grantee Publications
- Clear All
- 260 results found
- HIV/AIDS
- Vaccines/Therapeutics
A Multidimensional Metabolomics Workflow to Image Biodistribution and Evaluate Pharmacodynamics in Adult Zebrafish
Jackstadt et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049550
The evaluation of tissue distribution and pharmacodynamic properties of a drug is essential but often expensive in clinical research. The investigators developed a multidimensional metabolomics platform to evaluate drug activity that integrates mass spectrometry–based imaging, absolute drug quantitation, in vivo isotope tracing, and global metabolome analysis in zebrafish. They validated this platform by evaluating whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate and its impact on the systemic metabolism of adult zebrafish. This work suggests that the multidimensional metabolomics platform is a cost-effective method for evaluating on- and off-target effects of drugs. Supported by ORIP (R24OD024624) and NIEHS.
Early Treatment Regimens Achieve Sustained Virologic Remission in Infant Macaques Infected with SIV at Birth
Wang et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32554-z
About 150,000 children are infected postnatally with HIV each year. Early antiretroviral therapy (ART) in infants with HIV can reduce viral reservoir size, but ART-free virologic remission has not been achieved. The researchers hypothesized that proviral reservoir seeding in infants exposed to HIV might differ from that in adults. They characterized viral reservoirs in neonatal rhesus macaques of both sexes inoculated with simian immunodeficiency virus (SIV) at birth and given combination ART. The researchers reported that 9 months of treatment initiated at day 3 resulted in a sustained virologic remission, suggesting that early intervention with proper treatment regimens could be an effective strategy. Supported by ORIP (P51OD011104), NIAID, NICHD, and NIDCR.
Durable Protection Against the SARS-CoV-2 Omicron Variant Is Induced by an Adjuvanted Subunit Vaccine
Arunachalam et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abq4130
Additional SARS-CoV-2 vaccines are needed, owing to waning immunity to the original vaccines and the emergence of variants of concern. A recent study in male rhesus macaques demonstrated durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, an oil-in-water emulsion containing α‑tocopherol. Two immunizations with the vaccine resulted in durable immunity, without cross-reactivity. Further boosting with a version of the vaccine containing the Beta variant or the ancestral RBD elicited cross-reactive immune responses that conferred protection against Omicron challenge. Supported by ORIP (P51OD011104), NCI, and NIAID.
Sunitinib Inhibits STAT3 Phosphorylation in Cardiac Muscle and Prevents Cardiomyopathy in the mdx Mouse Model of Duchenne Muscular Dystrophy
Oliveira-Santos et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac042
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy, affecting about 1 in 5,000 boys worldwide. DMD is a fatal X-linked genetic disorder that results from mutations in the dystrophin gene and leads to progressive muscular degeneration. Individuals with DMD often die at a young age from respiratory or heart failure. To date, few studies have examined the basis of cardiac failure associated with DMD, and no effective U.S. Food and Drug Administration (FDA)–approved treatment options are available. Using a mouse model of both sexes, researchers characterized the effectiveness of sunitinib, an FDA-approved small-molecule drug, in preventing DMD-related cardiomyopathy. The treatment reduced STAT3 activation in cardiac muscle and prevented cardiomyopathy disease progression. Inhibition of STAT3 activation in cardiac muscle can reduce inflammation and fibrosis and prevent heart failure. These findings demonstrate sunitinib’s potential as a novel treatment option for skeletal and cardiac muscle dysfunction in patients with DMD. Supported by ORIP (R42OD030543).
A Clade C HIV-1 Vaccine Protects Against Heterologous SHIV Infection by Modulating IgG Glycosylation and T Helper Response in Macaques
Sahoo et al., Science Immunology. 2022.
https://www.doi.org/10.1126/sciimmunol.abl4102
Vaccines for HIV-1 capable of generating a broadly cross-reactive neutralizing antibody response are needed urgently. The researchers tested the protective efficacy of a clade C HIV-1 vaccination regimen in male rhesus macaques. The vaccine was administered either orally using a needle-free injector or via parenteral injection. Significant protection was observed for both vaccination routes following the simian–human immunodeficiency virus (SHIV) challenge, with an estimated efficacy of 68% per exposure. The glycosylation profile of IgG and HIV-resistant helper T cell response contributes to the protection. Supported by ORIP (P51OD011132), NIAID, and NIDCR.
Allogeneic MHC‑Matched T‑Cell Receptor Α/Β‑Depleted Bone Marrow Transplants in SHIV‑Infected, ART‑Suppressed Mauritian Cynomolgus Macaques
Weinfurter et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-16306-z
Allogeneic hematopoietic stem cell transplants are effective in reducing HIV reservoirs following antiretroviral therapy (ART). A better understanding of this mechanism could enable the development of safer and more efficacious HIV treatment regimens. In this study, the researchers used a Mauritian cynomolgus macaque model to study the effects of allogeneic major histocompatibility complex–matched α/β T cell–depleted bone marrow cell transplantation following infection with simian–human immunodeficiency virus (SHIV). The macaques began ART 6 to 16 weeks post-infection. In three of the four macaques, SHIV DNA was undetectable in blood but persisted in other tissues. These results suggest that extended ART likely is needed to eradicate the HIV reservoir following transplantation. In future studies, full donor engraftment should be balanced with suppression of graft-versus-host disease. Supported by ORIP (P51OD011106, R24OD021322), and NCI.
Innate Immune Regulation in HIV Latency Models
Olson et al., Retrovirology. 2022.
https://www.doi.org/10.1186/s12977-022-00599-z
Researchers are interested in developing therapeutic approaches to target latent HIV reservoirs, which are unaffected by antiretroviral therapy. Previous studies suggest that HIV latency might be related to viral RNA sensing, interferon (IFN) signaling, and IFN-stimulated gene (ISG) activation. In this study, the researchers evaluated responses to stimulation by retinoic acid–inducible gene I agonists and IFN in multiple CD4+ T cell line models for HIV latency. The models represented various aspects of latent infection and viral control. Several of the cell lines demonstrated reduced ISG induction, suggesting that long-term latency might be related to dysregulation of the downstream IFN response. These effects likely reflect transcriptional changes occurring within a core set of ISGs and altering IFN responses. Additional studies could provide insight into the functions of these ISGs in HIV latency. Supported by ORIP (P51OD010425), NCATS, and NIAID.
Safety and Antiviral Activity of Triple Combination Broadly Neutralizing Monoclonal Antibody Therapy Against HIV-1: A Phase 1 Clinical Trial
Julg et al., Nature Medicine. 2022.
https://www.doi.org/10.1038/s41591-022-01815-1
Previous evidence suggests that at least three broadly neutralizing antibodies (bNAbs) targeting different epitope regions are needed for robust treatment and control of HIV. The investigators evaluated the safety, tolerability, and pharmacokinetics of PGDM1400, an HIV-1 V2-glycan–specific antibody, in a first-in-human trial. The primary endpoints were safety, tolerability, pharmacokinetics, and antiviral activity. The trial met the prespecified endpoints in male and female adults. These data will help advance understanding of the capabilities, limitations, and future role of bNAb combinations in HIV prevention and care. Supported by ORIP (R01OD024917), NIAID, and NCATS.
Myeloid Cell Tropism Enables MHC-E–Restricted CD8+ T Cell Priming and Vaccine Efficacy by the RhCMV/SIV Vaccine
Hansen et al., Science Immunology. 2022.
https://www.doi.org/10.1126/sciimmunol.abn9301
Simian immunodeficiency virus (SIV) vaccines based on strain 68-1 rhesus cytomegalovirus vectors have been shown to arrest viral replication early in primary infection. The specific characteristics underlying this effect are not understood fully. In this study, the researchers used host microRNA–mediated vector tropism restriction to demonstrate that the targeted responses are dependent on vector infection of distinct cell types in a rhesus macaque model. Only vectors programmed to elicit major histocompatibility complex E–restricted CD8+ T cell responses provided protection against SIV challenge. These findings could be applied in the development of other vaccines for cancers and infectious diseases. Supported by ORIP (P51OD011092), NCI, and NIAID.
A Cellular Trafficking Signal in the SIV Envelope Protein Cytoplasmic Domain Is Strongly Selected for in Pathogenic Infection
Lawrence et al., PLOS Pathogens. 2022.
https://www.doi.org/10.1371/journal.ppat.1010507
Envelope glycoproteins within the cytoplasmic domain of HIV and simian immunodeficiency virus (SIV) include a tyrosine-based motif that mediates endocytosis and polarized sorting in infected cells. Mutation of this tracking signal has been shown to lead to suppressed viral replication and failed systemic immune activation, but the mechanism has not been explored fully. Using rhesus and pigtail macaque models, the researchers demonstrated that molecular clones containing the mutations reconstitute signals for both endocytosis and polarized sorting. Their findings suggest strong selection pressure for these processes during pathogenic HIV and SIV infection. Supported by ORIP (P51OD011104), NCI, and NIAID.