Selected Grantee Publications
- Clear All
- 18 results found
- Rare Diseases
- Vaccines/Therapeutics
- CRISPR
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
Systematic Ocular Phenotyping of 8,707 Knockout Mouse Lines Identifies Genes Associated With Abnormal Corneal Phenotypes
Vo et al., BMC Genomics. 2025.
https://pubmed.ncbi.nlm.nih.gov/39833678
Corneal dysmorphologies (CDs) are a group of acquired but predominantly genetically inherited eye disorders that cause progressive vision loss and can be associated with systemic abnormalities. This study aimed to identify candidate CD genes in humans by looking at knockout mice with targeted deletions of orthologous genes that exhibited statistically significant corneal abnormalities. Analysis of data from 8,707 knockout mouse lines identified 213 candidate CD genes; 176 (83%) genes have not been implicated previously in CD. Bioinformatic analyses implicated candidate genes in several signaling pathways (e.g., integrin signaling pathway, cytoskeletal regulation by Rho GTPase, FAS signaling pathway), which are potential therapeutic targets. Supported by ORIP (U42OD011175, R03OD032622, UM1OD023221), NEI, and NHGRI.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Commentary: The International Mouse Phenotyping Consortium: High-Throughput In Vivo Functional Annotation of the Mammalian Genome
Lloyd, Mammalian Genome. 2024.
https://pubmed.ncbi.nlm.nih.gov/39254744
The International Mouse Phenotyping Consortium (IMPC), a collectively governed consortium of 21 academic research institutions across 15 countries on 5 continents, represents a groundbreaking approach in genetics and biomedical research. Its goal is to create a comprehensive catalog of mammalian gene function that is freely available and equally accessible to the global research community. So far, the IMPC has uncovered the function of thousands of genes about which little was previously known. By 2027, when the current round of funding expires, the IMPC will have produced and phenotyped nearly 12,000 knockout mouse lines representing approximately 60% of the human orthologous genome in mice. This new knowledge has produced numerous insights about the role of genes in health and disease, including informing the genetic basis of rare diseases and positing gene product influences on common diseases. However, as IMPC nears the end of the current funding cycle, its path forward remains unclear. Supported by ORIP (UM1OD023221).