Selected Grantee Publications
- Clear All
- 239 results found
- Vaccines/Therapeutics
- Women's Health
Ultrasoft Platelet-Like Particles Stop Bleeding in Rodent and Porcine Models of Trauma
Nellenbach et al., Science Translational Medicine. 2024.
https://www.science.org/doi/10.1126/scitranslmed.adi4490
Platelet transfusions are the current standard of care to control bleeding in patients following acute trauma, but their use is limited by short shelf life and limited supply. Immunogenicity and contamination risks also are a concern. Using ultrasoft and highly deformable nanogels coupled to fibrin-specific antibody fragments, researchers developed synthetic platelet-like particles (PLPs) as an alternative for immediate treatment of uncontrolled bleeding. They report that PLPs reduced bleeding and facilitated healing of injured tissue in mice, rat, and swine models (sex not specified) for traumatic injury. These findings can inform further translational studies of synthetic PLPs for the treatment of uncontrolled bleeding in a trauma setting. Supported by ORIP (T32OD011130) and NHLBI.
Potent HPIV3-Neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity
Abu-Shmais et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38488511/
Human parainfluenza virus 3 fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing antibodies that inhibit infection. More work is needed to understand these dynamics. Researchers characterized the genetic signatures, epitope specificity, neutralization potential, and publicness of HPIV3-specific antibodies identified across multiple individuals. From this work, they identified 12 potently neutralizing antibodies targeting three nonoverlapping epitopes on HPIV3 F. Six of the antibodies used immunoglobulin heavy variable gene, IGHV 5-51. These antibodies used different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. These findings help elucidate the genetic and functional characteristics of HPIV3-neutralizing antibodies and indicate the existence of a reproducible H chain variable–dependent antibody response associated with VL and CDRH3 promiscuity. Supported by ORIP (K01OD036063), NCATS, NCI, NEI, NIAID, and NIDDK.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
Consistent Survival in Consecutive Cases of Life-Supporting Porcine Kidney Xenotransplantation Using 10GE Source Pigs
Eiseson et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38637524/
Xenotransplantation offers potential for addressing organ donor shortages, and the U.S. Food and Drug Administration recently issued guidance on a regulatory path forward. Researchers have performed studies in this area, but concerns have been expressed about safe clinical translation of their results (e.g., survival, preclinical procurement, immunosuppression, clinical standards of care). In this study, the authors report consistent survival in consecutive cases of kidney xenotransplantation from pigs (male and female) to baboons (male and female). The authors propose that their findings serve as proof of concept for prevention of xenograft rejection in recipients of genetically modified porcine kidneys. This work offers insights for immunosuppression regimens for first-in-human clinical trials. Supported by ORIP (P40OD024628).
Potent Antibody-Dependent Cellular Cytotoxicity of a V2-Specific Antibody Is Not Sufficient for Protection of Macaques Against SIV Challenge
Grunst et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/38252675/
Antibody-dependent cellular cytotoxicity (ADCC) has been correlated with decreased risk of HIV acquisition. Researchers tested the ability of PGT145, an antibody that neutralizes genetically diverse HIV-1 isolates, to protect rhesus macaques against simian immunodeficiency virus (SIV) via ADCC activity. They found that a single amino acid substitution in the V2 core epitope of the SIV envelope increases PGT145 binding and confers sensitivity to neutralization. Peak and chronic phase viral loads were lower, and time to peak viremia was delayed. They concluded that ADCC is insufficient for protection by this antibody, but increasing the affinity of antibody binding could confer partial protection. Supported by ORIP (P51OD011106), NIAID, and NCI.
Induction of Durable Remission by Dual Immunotherapy in SHIV-Infected ART-Suppressed Macaques
Lim et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38422185/
The latent viral reservoir is established within the first few days of HIV infection and remains a barrier to a clinical cure. Researchers characterized the effects of a combined Anktiva (N-803) treatment with broadly neutralizing antibodies (bNAbs) using male and female rhesus macaques infected with simian–human immunodeficiency virus infection. Their data suggest that these agents synergize to enhance CD8+ T-cell function, particularly when multiple bNAbs are used. Taken together, this work indicates that immune-mediated control of viral rebound is not a prerequisite for sustained remission after discontinuation of antiretroviral therapy and that immune-mediated control of viral rebound is achievable, sufficient, and sustainable in this model. Supported by ORIP (P51OD011106, P40OD028116, R24OD011195) and NIAID.
TGF-β Blockade Drives a Transitional Effector Phenotype in T Cells Reversing SIV Latency and Decreasing SIV Reservoirs In Vivo
Kim et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38355731/
Interruption of antiretroviral therapy leads to rapid rebound of viremia due to the establishment of a persistent viral reservoir early after infection. Using a treatment regimen similar to the one tested in clinical trials, the authors show how galunisertib affects immune cell function, increases simian immunodeficiency virus (SIV) reactivation, and reduces the viral reservoir in female rhesus macaques. Their findings reveal a galunisertib-driven shift toward an effector phenotype in T and natural killer cells. Taken together, this work demonstrates that galunisertib, a clinical-stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in the absence of toxicity. Supported by ORIP (R24OD010947), NIAID, and NCI.
Pathogenesis and Virulence of Coronavirus Disease: Comparative Pathology of Animal Models for COVID-19
Kirk et al., Virulence. 2024.
https://pubmed.ncbi.nlm.nih.gov/38362881
Researchers have used animal models that can replicate clinical and pathologic features of severe human coronavirus infections to develop novel vaccines and therapeutics in humans. The purpose of this review is to describe important animal models for COVID-19, with an emphasis on comparative pathology. The highlighted species included mice, ferrets, hamsters, and nonhuman primates. Knowledge gained from studying these animal models can help inform appropriate model selection for disease modeling, as well as for vaccine and therapeutic developments. Supported by ORIP (T32OD010993) and NIAID.