Selected Grantee Publications
- Clear All
- 239 results found
- Vaccines/Therapeutics
- Women's Health
Early Antiretroviral Therapy in SIV-Infected Rhesus Macaques Reveals a Multiphasic, Saturable Dynamic Accumulation of the Rebound Competent Viral Reservoir
Keele et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/38593120/
Researchers studied the dynamics of rebound-competent viral reservoir (RCVR) establishment in male and female rhesus macaques and assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of antiretroviral therapy (ART) after 1 year. All rhesus macaques rebounded between 7 and 16 days after ART, with 3 to 28 rebound lineages. Calculated reactivation rates per pre-ART plasma viral load were consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks after infection. The data highlight the heterogeneity of the RCVR between rhesus macaques, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection. Supported by ORIP (P51OD011092), NCI, and NIAID.
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Isolation of Human Antibodies Against Influenza B Neuraminidase and Mechanisms of Protection at the Airway Interface
Wolters et al., Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/38823390
In this report, researchers describe the isolation of human monoclonal antibodies (mAbs) that recognized the influenza B virus (IBV) neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Their work suggests that the antibodies recognized two major antigenic sites. The first group included mAb FluB-393, and the second group contained an active site mAb, FluB-400. Their findings can help inform the mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates. Supported by ORIP (K01OD036063) and NIGMS.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
CD8+ T Cell Targeting of Tumor Antigens Presented by HLA-E
Iyer, Science Advances. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086602/
Researchers have hypothesized that human leukocyte antigen-E (HLA-E)–positive cancer cells could be targeted by HLA-E–restricted CD8+ T cells. In this study, the authors assessed whether major histocompatibility complex E (MHC-E) expression by cancer cells can be targeted for MHC-E–restricted T cell control. Using male rhesus macaques, they found that a cytomegalovirus can be used as a vector to generate specific immune cells that can target cancer cells. The authors conclude that targeting HLA-E with restricted, specific CD8+ T cells could offer a new approach for immunotherapy of prostate cancer. Overall, this study supports the concept of a cancer vaccine. Supported by ORIP (P51OD011092) and NIAID.
Neutralizing Antibody Response to SARS‐CoV‐2 Bivalent mRNA Vaccine in SIV‐Infected Rhesus Macaques: Enhanced Immunity to XBB Subvariants by Two‐Dose Vaccination
Faraone, Journal of Medical Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38528837/
Researchers have shown that mRNA vaccination is less effective for people with advanced or untreated HIV infection, but data on the efficacy of mRNA vaccination against SARS-CoV-2 in this population are limited. Using rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV), investigators examined the neutralizing antibody (nAb) response to SARS-CoV-2 vaccination. They found that administration of the bivalent vaccine alone can generate robust nAb titers against Omicron subvariants. Additionally, dams that received antiretroviral therapy had lower nAb titers than untreated dams. Overall, these findings highlight the need for further investigations into the nAb response in people with HIV. Supported by ORIP (P51OD011104), NCI, NIAID, NICHD, and NIMH.
SIV Infection Is Associated With Transient Acute-Phase Steatosis in Hepatocytes In Vivo
Derby, Viruses. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10892327/
Metabolic dysfunction–associated fatty liver disease (MAFLD) in people with HIV has become an increasing concern, but little is known about liver-specific changes underlying HIV-related MAFLD. Using rhesus macaques (sex not specified), researchers examined the timing of pathogenic changes within the liver during simian immunodeficiency virus (SIV) infection. Their findings suggest differential pathologies associated with the acute and chronic phases of infection. This work highlights the early damage inflicted on the liver by SIV/HIV infection and indicates that damage to the hepatocytes plays a specific role. Overall, the authors conclude that therapeutic interventions targeting metabolic function may benefit liver health in people who have recently received an HIV diagnosis. Supported by ORIP (P51OD011107, P51OD011092) and NIAID.