Selected Grantee Publications
- Clear All
- 20 results found
- COVID-19/Coronavirus
- Stem Cells/Regenerative Medicine
- 2023
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
The Impact of SIV-Induced Immunodeficiency on Clinical Manifestation, Immune Response, and Viral Dynamics in SARS-CoV-2 Coinfection
Melton et al., bioRxiv. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680717/
The effects of immunodeficiency caused by chronic HIV infection on COVID-19 have not been directly addressed in a controlled setting. Investigators conducted a pilot study in which two pigtail macaques (PTMs) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and compared with SIV-naive PTMs infected with SARS-CoV-2. Despite the marked decrease in CD4+ T cells in the SIV-positive animals prior to exposure to SARS-CoV-2, investigators found that disease progression, viral persistence, and evolution of SARS-CoV-2 were comparable to the control group. These findings suggest that SIV-induced immunodeficiency alters the immune response to SARS-CoV-2 infection, leading to impaired cellular and humoral immunity. However, this impairment does not significantly alter the course of infection. Supported by ORIP (P51OD011104, U42OD013117, S10OD026800, S10OD030347) and NIAID.
Broad Receptor Tropism and Immunogenicity of a Clade 3 Sarbecovirus
Lee et al., Cell Host and Microbe. 2023.
https://www.sciencedirect.com/science/article/pii/S1931312823004225
Investigators showed that the S glycoprotein of the clade 3 sarbecovirus PRD-0038 in the African Rhinolophus bat has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. They generated a cryogenic electron microscopy structure of the RBD bound to ACE2, explaining receptor tropism and highlighting differences between SARS-CoV-1 and SARS-CoV-2. PRD‑0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses, compared with SARS-CoV-2. These findings underline a potential molecular pathway for zoonotic spillover of a clade 3 sarbecovirus, as well as the need to develop pan-sarbecovirus vaccines and countermeasures. Supported by ORIP (S10OD032290, S10OD026959, S10OD021644), NIAID, NCI, and NIGMS.
DAZL Knockout Pigs as Recipients for Spermatogonial Stem Cell Transplantation
Lara et al., Cells. 2023.
https://pubmed.ncbi.nlm.nih.gov/37947660/
Spermatogonial stem cell (SSC) transplantation is a technique that holds potential for addressing male infertility, as well as generation of genetically modified animal models. DAZL (Deleted in Azoospermia–Like) is a conserved RNA-binding protein important for germ cell development, and DAZL knockout (KO) causes defects in germ cell commitment and differentiation. Investigators characterized DAZL-KO pigs as SSC transplantation recipients. DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring. Supported by ORIP (R01OD016575) and NIGMS.
Increased Collective Migration Correlates With Germline Stem Cell Competition in a Basal Chordate
Fentress and De Tomaso et al., PLOS One. 2023.
https://pubmed.ncbi.nlm.nih.gov/37903140/
Cell competition is a process that compares the relative fitness of progenitor cells and results in healthier cells, contributing a higher proportion to the final tissue composition. Investigators are studying cell competition in a novel model organism, the colonial ascidian, Botryllus schlosseri. They demonstrated that winner germline stem cells show enhanced migratory ability to chemotactic cues ex vivo and that enhanced migration correlates with both expression of the Notch ligand, Jagged, and cluster size. The ability to study conserved aspects of cell migration makes Botryllus an excellent model for future studies on competition, chemotaxis, and collective cell migration. Supported by ORIP (R21OD030520) and NIGMS.
First-in-Human ImmunoPET Imaging of COVID-19 Convalescent Patients Using Dynamic Total-Body PET and a CD8-Targeted Minibody
Omidvari et al., Science Advances. 2023.
https://pubmed.ncbi.nlm.nih.gov/36993568/
Developing noninvasive methods for in vivo quantification of T cell distribution and kinetics is important because most T cells reside in the tissue. Investigators presented the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell distribution in healthy individuals and COVID-19 patients. Kinetic modeling results aligned with the expected T cell trafficking effects. Tissue-to-blood ratios were consistent with modeled net influx rates and flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory. Supported by ORIP (S10OD018223) and NCI.
Large-Scale Production of Human Blastoids Amenable to Modeling Blastocyst Development and Maternal-Fetal Crosstalk
Yu et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S1934590923002850?via%3Dihub=
Human blastoids provide a valuable model to study early human development and implantation with reduced genetic heterogeneity between samples. Investigators reported a protocol for efficient generation of high-fidelity human blastoids from naïve pluripotent stem cells. The similarities between blastoids and blastocysts in signaling activities—demonstrated using single-cell RNA sequencing—support the use of blastoids to model lineage differentiation and cavity formation. Additionally, endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids demonstrated the capability to model maternal–fetal crosstalk. The protocol will facilitate broader use of human blastoids as an ethical model for human blastocysts. Supported by ORIP (S10OD028630) and others.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
Allogeneic Immunity Clears Latent Virus Following Allogeneic Stem Cell Transplantation in SIV-Infected ART-Suppressed Macaques
Wu et al., Immunity. 2023.
https://doi.org/10.1016/j.immuni.2023.04.019
Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been documented as curative for HIV, but the mechanisms are not yet known. Using Mauritian cynomolgus macaques of both sexes, researchers performed reduced-intensity alloHSCT experiments to define the individual contributions of allogeneic immunity and CCR5 deficiency to an alloHSCT-mediated HIV cure. They reported that allogeneic immunity was the major driver of reservoir clearance, mediating graft-versus-reservoir effects in HIV infection. Their results also point to a protective mechanism for CCR5 deficiency early during engraftment. Future efforts could focus on harnessing the beneficial effects of allogeneic immunity while avoiding graft-versus-host disease. Supported by ORIP (P51OD011092) and NIAID.