Selected Grantee Publications
- Clear All
- 3 results found
- COVID-19/Coronavirus
- Immunology
- Preservation
Simian Immunodeficiency Virus and Storage Buffer: Field-Friendly Preservation Methods for RNA Viral Detection in Primate Feces
Wilde et al., mSphere. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732032/
Simian immunodeficiency virus (SIV) infects more than 40 nonhuman primate (NHP) species in sub-Saharan Africa, but testing in wild NHP populations can be challenging. Researchers compared methods for SIV RNA preservation and recovery from NHP fecal samples stored in four different buffers. The goal of this work was to identify a robust “field-friendly” method (i.e., without freezing or refrigeration) for this effort, and the samples were collected from a mantled guereza colobus housed at the Columbus Zoo and Aquarium. The authors reported that the DNA/RNA shield is an optimal buffer for preserving SIV RNA in fecal samples in the field. Their findings will inform future fieldwork and facilitate improved approaches for studies of SIV and other RNA viruses. Supported by ORIP (P51OD011132) and NIAID.
Orthotopic Transplantation of the Full-Length Porcine Intestine After Normothermic Machine Perfusion
Abraham et al., Transplantation Direct. 2022.
https://www.doi.org/10.1097/TXD.0000000000001390
Successful intestinal transplantation currently is hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation could expand transplantable graft numbers and enhance post-transplant outcomes. Superior transplant outcomes recently have been demonstrated in clinical trials using machine perfusion to preserve the liver. The investigators report the development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model. Supported by ORIP (K01OD019911), NIAID, and NIDDK.
Nonhuman Primate Models for SARS-CoV-2 Research: Cryopreservation as a Means to Maintain Critical Models and Enhance the Genetic Diversity of Colonies
Arnegard and Hild et al., Lab Animal. 2021.
https://doi.org/10.1038/s41684-021-00792-1
This commentary, written by ORIP staff, addresses the need for improved cryopreservation methods and resources for nonhuman primate (NHP) gametes and embryos to safeguard newly developed NHP models and enhance the genetic diversity of NHP colonies without reliance on animal importations. Cryopreservation also plays critical roles in medical approaches to preserve the fertility of patients who must undergo potentially gonadotoxic treatments, as well as nascent genome editing efforts to develop new NHP models for human diseases. Given these diverse benefits to research progress, ORIP continues to fund the development of cryopreservation tools and approaches for NHPs and other animal models.