Selected Grantee Publications
- Clear All
- 13 results found
- COVID-19/Coronavirus
- Pediatrics
- Imaging
Characterization of Collaborative Cross Mouse Founder Strain CAST/EiJ as a Novel Model for Lethal COVID-19
Baker et al., Scientific Reports. 2024.
https://www.nature.com/articles/s41598-024-77087-1
Researchers characterized the Collaborative Cross (CC) mouse model founder strain CAST/EiJ as a novel model for severe COVID-19, exhibiting high viral loads and mortality. By leveraging genetically diverse CC strains, this study identified variations in susceptibility and survival against SARS-CoV-2 variants. CAST/EiJ mice developed lung pathology and mortality despite antiviral defenses, making them a valuable tool for understanding host–pathogen interactions. The findings emphasize the utility of diverse animal models in uncovering genetic and immunological factors that influence disease outcomes, facilitating the development of targeted therapies against COVID-19 to mitigate future pandemics. Supported by ORIP (P40OD011102).
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Disruption of Myelin Structure and Oligodendrocyte Maturation in a Macaque Model of Congenital Zika Infection
Tisoncik-Go et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49524-2
Maternal infection during pregnancy can have severe consequences on fetal development and survival. Using a pigtail macaque model for Zika virus infection, researchers show that in utero exposure of a fetus to Zika virus due to maternal infection results in significantly decreased myelin formation around neurons. Myelin is a protective sheath that forms around neurons and is required for brain processing speed. This study suggests that reduced myelin resulting from Zika infection in utero is likely a contributing factor to severe deficits in brain development and microcephaly. Supported by ORIP (P51OD010425), NEI, and NIAID.
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
First-in-Human ImmunoPET Imaging of COVID-19 Convalescent Patients Using Dynamic Total-Body PET and a CD8-Targeted Minibody
Omidvari et al., Science Advances. 2023.
https://pubmed.ncbi.nlm.nih.gov/36993568/
Developing noninvasive methods for in vivo quantification of T cell distribution and kinetics is important because most T cells reside in the tissue. Investigators presented the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell distribution in healthy individuals and COVID-19 patients. Kinetic modeling results aligned with the expected T cell trafficking effects. Tissue-to-blood ratios were consistent with modeled net influx rates and flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory. Supported by ORIP (S10OD018223) and NCI.
Naturally Occurring Osteochondrosis Latens Lesions Identified by Quantitative and Morphological 10.5 T MRI in Pigs
Armstrong et al., Journal of Orthopaedic Research. 2023.
https://pubmed.ncbi.nlm.nih.gov/35716161/
Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that is associated with pain and gait deficits. JOCD lesions form in the knee, elbow, and ankle joints and can progress to early-onset osteoarthritis. In this study, researchers used a noninvasive magnetic resonance imaging (MRI) method to identify naturally occurring lesions in intact knee and elbow joints of juvenile pigs. This work can be applied to noninvasive identification and monitoring of early JOCD lesions and determination of risk factors that contribute to their progression in children. Supported by ORIP (K01OD021293, T32OD010993), NIAMS, and NIBIB.
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
In Vitro and In Vivo Functions of SARS-CoV-2 Infection-Enhancing and Neutralizing Antibodies
Li et al., Cell. 2021.
https://doi.org/10.1016/j.cell.2021.06.021
Antibody-dependent enhancement of infection is a concern for clinical use of antibodies. Researchers isolated neutralizing antibodies against the receptor-binding domain (RBD) or N-terminal domain (NTD) of SARS-CoV-2 spike from COVID-19 patients. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific binding modes. RBD and NTD antibodies mediated both neutralization and infection enhancement in vitro. However, infusion of these antibodies into mice or macaques resulted in suppression of virus replication, demonstrating that antibody-enhanced infection in vitro does not necessarily predict enhanced infection in vivo. RBD-neutralizing antibodies having cross-reactivity against coronaviruses were protective against SARS-CoV-2, the most potent of which was DH1047. Supported by ORIP (P40OD012217, U42OD021458, S10OD018164), NIAID, NCI, NIGMS, and NIH Common Fund.