Selected Grantee Publications
- Clear All
- 70 results found
- COVID-19/Coronavirus
- Women's Health
Infection of the Maternal–Fetal Interface and Vertical Transmission Following Low-Dose Inoculation of Pregnant Rhesus Macaques (Macaca mulatta) with an African-Lineage Zika Virus
Koenig et al., PLOS ONE. 2023.
https://doi.org/10.1371/journal.pone.0284964
Researchers examined transmission of Zika virus to nonhuman primate fetuses during pregnancy. Even with a low dosage of inoculation of the dams, the investigators found that the Zika virus infected fetuses, despite the presence of a “placental fortress,” which normally protects fetuses during gestation. This transmission illustrates the high level of infectivity threat that Zika poses, which may increase if mosquitoes expand their global habitats. Understanding how Zika breaches the placental barrier will help researchers develop strategies to prevent fetal infection during pregnancy and thereby prevent adverse outcomes, such as brain malformation defects. Supported by ORIP (P51OD011106, S10OD023526), NIAID, NCI, and NIGMS.
Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography
Coughlan et al., JAMA Neurology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37010830/
To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability. This study suggests female individuals with these conditions may be at higher risk of pathological burden. Supported by ORIP (S10OD025245), NIA, and NICHD.
Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates
Maity et al., Molecular & Cellular Proteomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981268/
In this study, researchers examined the proteins expressed in cerebrospinal fluid (CSF) in nonhuman primates (NHPs) to better understand how COVID-19 infection can result in brain pathology, a common outcome. The study found that even in NHPs with minimal or mild COVID‑19, CSF proteins were significantly dysregulated compared with uninfected NHPs. Furthermore, the most affected proteins were enriched in the same brain regions that show lesions after COVID-19 infection, including the cerebral cortex, basal ganglia, and brain stem. Collectively, these regions have wide-ranging control over such crucial functions as cognition, motor control, and breathing, showing how even mild COVID-19 infection can result in significant neurological impairment. Supported by ORIP (P51OD011104, S10OD032453), NIGMS, NCI, and NICHD.
Infant Rhesus Macaques Immunized Against SARS-CoV-2 Are Protected Against Heterologous Virus Challenge 1 Year Later
Milligan et al., Science Translational Medicine. 2023.
https://doi.org/10.1126/scitranslmed.add6383
The Moderna and Pfizer–BioNTech mRNA vaccines received emergency use authorization for infants 6 months and older in June 2022, but questions remain regarding the durability of vaccine efficacy against emerging variants in this age group. Using a two-dose vaccine regimen consisting of stabilized prefusion Washington-strain spike protein encoded by mRNA and encapsulated in lipid nanoparticles, the investigators immunized 2-month-old rhesus macaques of both sexes. They found that the immune responses persisted and protected from severe disease after heterologous challenge with the Delta variant 1 year later. The decay kinetics of vaccine-induced neutralizing antibody responses in the infant monkeys are comparable to those observed in adult humans and nonhuman primates. Supported by ORIP (P51OD011107), NIAID, and NCI.
Fc-Mediated Pan-Sarbecovirus Protection After Alphavirus Vector Vaccination
Adams et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37000623/
Group 2B β-coronaviruses (i.e., sarbecoviruses) have resulted in regional and global epidemics. Here, the authors evaluate the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. They reported that vaccination does not prevent virus replication, but it protects against lethal heterologous disease outcomes in SARS-CoV-2 and clade 2 bat sarbecovirus challenge models. Full-length spike vaccines elicited the broadest pan-sarbecovirus protection. Additionally, antibody-mediated cross-protection was lost in absence of FcR function, supporting a model for non-neutralizing, protective antibodies. Taken together, these findings highlight the value of universal sarbecovirus vaccine designs that couple FcR-mediated cross-protection with potent cross-neutralizing antibody responses. Supported by ORIP (K01OD026529), NIAID, and NCI.
Spike and Nsp6 Are Key Determinants of SARS-CoV-2 Omicron BA.1 Attenuation
Chen et al., Nature. 2023.
https://pubmed.ncbi.nlm.nih.gov/36630998/
The ability of the SARS-CoV-2 virus to mutate and create variants of concern demands new vaccines to control the COVID-19 pandemic. The SARS-CoV-2 Omicron variant was shown to be more immune evasive and less virulent than current major variants. The spike (S) protein in this variant carries many mutations that drive these phenotypes. Researchers generated a chimeric recombinant SARS-CoV-2 virus encoding the S gene of Omicron (BA.1 lineage) in an ancestral SARS-CoV-2 isolate and compared it with the naturally circulating Omicron variant. The Omicron S-bearing virus escaped vaccine-induced humoral immunity, owing to mutations in the receptor-binding motif. The recombinant virus replicated efficiently in distal lung cell lines and in K18-hACE2 mice. Moreover, mutations induced in non-structural protein 6 (nsp6) in addition to the S protein were sufficient to restate the attenuated phenotype of Omicron. These findings indicate that the pathogenicity of Omicron is determined by mutations both inside and outside of the S gene. Supported by ORIP (S10OD026983, S10OD030269).
Impaired Placental Hemodynamics and Function in a Non-Human Primate Model of Gestational Protein Restriction
Lo et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-28051-y
Maternal malnutrition is a global health epidemic that adversely affects fetal outcomes and results in long-term health complications in children. Investigators used a previously developed model in nonhuman primates for gestational protein restriction to study the impact of undernutrition, specifically protein deficiency, on placental function and pregnancy outcomes. The data demonstrate that a 50% protein-restricted diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics could partly explain human growth restriction and stillbirth seen with severe protein restriction in developing countries. Supported by ORIP (P51OD011092) and NICHD.
Surrogate Biomarkers of Disease Progression in Human Pegivirus Seropositive Human Immunodeficiency Virus–Infected Individuals
Vimali et al., Viral Immunology. 2023.
Researchers have previously observed that human pegivirus (HPgV) infection is associated with reduced progression of HIV. Investigators examined markers of HIV progression in male and female individuals with HIV and HPgV infection. They reported that HIV plasma viral load was lower in HPgV-seropositive individuals with HIV than in HPgV‑seronegative individuals with HIV. They also found that clinical markers of hepatic damage were significantly lower in HPgV-seropositive individuals with HIV. Future work could examine pathways through which HPgV influences HIV control, which might inform the development of new therapeutics. Supported by ORIP (P51OD011132) and NIAID.
Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients Is Associated with Microbial Translocation and Bacteremia
Bernard-Raichon et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33395-6
The investigators demonstrated that SARS-CoV-2 infection induced gut microbiome dysbiosis in male mice. Samples collected from human COVID-19 patients of both sexes also revealed substantial gut microbiome dysbiosis. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicated that bacteria might translocate from the gut into the systemic circulation of COVID-19 patients. These results were consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19. Supported by ORIP (S10OD021747), NCI, NHLBI, NIAID, and NIDDK.
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.