Selected Grantee Publications
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
Lesion Environments Direct Transplanted Neural Progenitors Towards a Wound Repair Astroglial Phenotype in Mice
O’Shea et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33382-x
Neural progenitor cells (NPCs) are potential cell transplantation therapies for central nervous system (CNS) injuries. Investigators derived NPCs expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling. Their findings reveal similarities between the transcriptional profiles, cellular morphologies, and functional features of cells transplanted into subacute CNS lesions and host astroglia. The astroglia are stimulated by injuries to proliferate and adopt a naturally occurring, border-forming wound repair phenotype in mice of both sexes. Understanding the autonomous cues instructing NPCs transplanted in CNS host tissue will be fundamental to therapeutic NPC transplantation. Supported by ORIP (U42OD010921,U42OD011174, UM1OD023222) and NINDS.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy
Solis-Leal et al., Viruses. 2022.
https://www.doi.org/10.3390/v14010139
The central nervous system (CNS) HIV reservoir contributes to residual neuroimmune activation, which can lead to HIV-associated neurocognitive disorder. Researchers characterized the expression of signaling molecules associated with inflammation in plasma, cerebrospinal fluid, and basal ganglia of Chinese-origin rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV). They reported a correlation between levels of CCL2 in plasma and cerebrospinal fluid, suggesting that researchers could infer the degree of CNS inflammation by testing CCL2 levels in peripheral blood. Overall, these findings provide insight into neuroinflammation and signaling associated with HIV persistence in the CNS. Supported by ORIP (P51OD011104, P51OD011133), NIMH, and NINDS.