Selected Grantee Publications
- Clear All
- 9 results found
- ninds
- S10 [SIG, BIG, HEI]
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Lymphoid Tissues Contribute to Plasma Viral Clonotypes Early After Antiretroviral Therapy Interruption in SIV-Infected Rhesus Macaques
Solis-Leal et al., Science Translational Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/38091409/
Researchers are interested in better understanding the sources, timing, and mechanisms of HIV rebound that occurs after interruption of antiretroviral therapy (ART). Using rhesus macaques (sex not specified), investigators tracked barcoded simian immunodeficiency virus (SIV) clonotypes over time and among tissues. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. Additionally, the authors reported that CD4+ T cells harbored the most viral RNA after ART interruption. These tissues are likely to contribute to viral reactivation and rebound after ART interruption, but further studies are needed to evaluate the relative potential contributions from other tissues and organs. Supported by ORIP (P51OD011104, P51OD011133, S10OD028732, S10OD028653), NCI, NIMH, and NINDS.
SALL1 Enforces Microglia-Specific DNA Binding and Function of SMADs to Establish Microglia Identity
Fixsen et al., Nature Immunology. 2023.
https://doi.org/10.1038/s41590-023-01528-8
Microglia function is thought to play a role in neurodevelopmental, psychiatric, and neurodegenerative diseases. Using knockout mice, investigators explored functional interactions between spalt-like transcription factor 1 (SALL1) and SMAD4, which demonstrated that interactions are mediated by a conserved microglia-specific SALL1 super-enhancer and result in direct activation of regulatory elements. The concerted interactions induce a microglia lineage determining program of gene expression. These findings indicate that expression of SALL1 and associated genes could contribute to phenotypes of aging and neurodegenerative diseases. Supported by ORIP (S10OD026929), NIA, NIMH, and NINDS.
The Drosophila Chemokine-Like Orion Bridges Phosphatidylserine and Draper in Phagocytosis of Neurons
Ji et al., PNAS. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276397/
Degenerating neurons can be cleared by phagocytosis triggered by “eat-me” signal phosphatidylserine (PS) and mediated by the engulfment receptor Draper (Drpr), yet the process is poorly understood. Investigators used several Drosophila models to study dendrite degeneration and demonstrated that the fly chemokine-like protein Orion binds to PS and mediates interactions between PS and Drpr to enable phagocytosis. This study identifies a link between immunomodulatory proteins and phagocytosis of neurons and reveals conserved mechanisms of clearing degenerating neurons. Supported by ORIP (R24OD031953, R21OD023824, S10OD018516) and NINDS.
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.