Selected Grantee Publications
- Clear All
- 29 results found
- ninds
- Rare Diseases
- Vaccines/Therapeutics
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Transcriptome- and Proteome-Wide Effects of a Circular RNA Encompassing Four Early Exons of the Spinal Muscular Atrophy Genes
Luo, Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38714739/
Spinal muscular atrophy (SMA) is a leading genetic cause of mortality in infants and often results from a deficiency of deletions of or mutations in the SMN1 gene. In this study, researchers report the transcriptome- and proteome-wide effects of overexpression of C2A‑2B3-4, a circular RNA produced by SMN1 and SMN2, in cells. They report that C2A-2B-3-4 is associated with expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation, and neuromuscular junction formation. More work is needed to investigate the role of these genes in processes associated with SMA and other pathological conditions, including cancer and male infertility. Supported by ORIP (T35OD027967) and NINDS.
Lymphoid Tissues Contribute to Plasma Viral Clonotypes Early After Antiretroviral Therapy Interruption in SIV-Infected Rhesus Macaques
Solis-Leal et al., Science Translational Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/38091409/
Researchers are interested in better understanding the sources, timing, and mechanisms of HIV rebound that occurs after interruption of antiretroviral therapy (ART). Using rhesus macaques (sex not specified), investigators tracked barcoded simian immunodeficiency virus (SIV) clonotypes over time and among tissues. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. Additionally, the authors reported that CD4+ T cells harbored the most viral RNA after ART interruption. These tissues are likely to contribute to viral reactivation and rebound after ART interruption, but further studies are needed to evaluate the relative potential contributions from other tissues and organs. Supported by ORIP (P51OD011104, P51OD011133, S10OD028732, S10OD028653), NCI, NIMH, and NINDS.
Very-Long-Chain Fatty Acids Induce Glial-Derived Sphingosine-1-Phosphate Synthesis, Secretion, and Neuroinflammation
Chung et al., Cell Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37084732/
Very-long-chain fatty acids (VLCFAs) are the most abundant fatty acids in myelin. During age‑associated degeneration of myelin, glia are exposed to increased levels of VLCFAs. Investigators previously described a novel phenotype in patients that harbors a novel variant in the peroxisomal enzyme ACOX1. Here, they report that that glial loss of ACOX1 leads to an increase of VLCFAs, which results in a concomitant increase in sphingosine-1-phosphate (S1P). They found that suppressing S1P function attenuates the pathological phenotypes caused by excess VLCFAs. This work suggests that lowering of VLCFAs and S1P could be applied as a treatment avenue for multiple sclerosis. Supported by ORIP (R24OD022005, R24OD031447, P40OD018537), NINDS, and NICHD
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS
Antiretroviral Therapy Ameliorates Simian Immunodeficiency Virus–Associated Myocardial Inflammation by Dampening Interferon Signaling and Pathogen Response in the Heart
Robinson et al., The Journal of Infectious Diseases. 2023.
https://doi.org/10.1093/infdis/jiad105
HIV is associated with increased risk of cardiovascular disease, but the underlying mechanisms are not fully understood. Using RNA sequencing, investigators characterized the effects of simian immunodeficiency virus (SIV) infection on the hearts of male rhesus macaques. They demonstrated that SIV infection drives a canonical antiviral response in the heart, as well as dysregulation of genes involved in fatty acid shuttling and metabolism. Their findings suggest that antiretroviral therapy helps mitigate immune activation during viremic conditions and plays a cardioprotective role. Future studies are needed to assess the long-term effects of these dynamics. Supported by ORIP (P51OD011104), NIAID, NIMH, and NINDS.