Selected Grantee Publications
- Clear All
- 5 results found
- ninds
- COVID-19/Coronavirus
- Pediatrics
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Loss of Gap Junction Delta-2 (GJD2) Gene Orthologs Leads to Refractive Error in Zebrafish
Quint et al., Communications Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34083742/
Myopia is the most common developmental disorder of juvenile eyes. Although little is known about the functional role of GJD2 in refractive error development, the authors find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish cause changes in eye biometry and refractive status. Their immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin; its depletion leads to hyperopia and electrophysiological retina changes. They found a lenticular role; lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. The results provide functional evidence of a link between gjd2 and refractive error. Supported by ORIP (R24OD026591), NIGMS, and NINDS.