Selected Grantee Publications
Cell-Specific Regulation of Gene Expression Using Splicing-Dependent Frameshifting
Ling et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33523-2
Precise and reliable cell-specific gene delivery remains technically challenging. Investigators report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which they denote as splicing-linked expression design (SLED), can be combined in a Boolean manner with such existing techniques as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. The authors also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research. Supported by ORIP (T32OD011089, S10OD026859), NEI, and NIMH.