Selected Grantee Publications
RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology
Huang et al., The Journal of Infectious Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/38079216/
Brain tissue–derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from male pigtailed macaques, researchers identified dysregulated RNAs in acute and chronic infection. Most dysregulated messenger RNAs (mRNAs) in bdEVs reflected dysregulation in source BH, and these mRNAs are disproportionately involved in inflammation and immune responses. Additionally, several circular RNAs were differentially abundant in source tissue and might be responsible for specific differences in small RNA levels in bdEVs during simian immunodeficiency virus (SIV) infection. This RNA profiling shows potential regulatory networks in SIV infection and SIV-related CNS pathology. Supported by ORIP (U42OD013117), NCI, NIAID, NIDA, NIMH, and NINDS.
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
Antiretroviral Therapy Ameliorates Simian Immunodeficiency Virus–Associated Myocardial Inflammation by Dampening Interferon Signaling and Pathogen Response in the Heart
Robinson et al., The Journal of Infectious Diseases. 2023.
https://doi.org/10.1093/infdis/jiad105
HIV is associated with increased risk of cardiovascular disease, but the underlying mechanisms are not fully understood. Using RNA sequencing, investigators characterized the effects of simian immunodeficiency virus (SIV) infection on the hearts of male rhesus macaques. They demonstrated that SIV infection drives a canonical antiviral response in the heart, as well as dysregulation of genes involved in fatty acid shuttling and metabolism. Their findings suggest that antiretroviral therapy helps mitigate immune activation during viremic conditions and plays a cardioprotective role. Future studies are needed to assess the long-term effects of these dynamics. Supported by ORIP (P51OD011104), NIAID, NIMH, and NINDS.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy
Solis-Leal et al., Viruses. 2022.
https://www.doi.org/10.3390/v14010139
The central nervous system (CNS) HIV reservoir contributes to residual neuroimmune activation, which can lead to HIV-associated neurocognitive disorder. Researchers characterized the expression of signaling molecules associated with inflammation in plasma, cerebrospinal fluid, and basal ganglia of Chinese-origin rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV). They reported a correlation between levels of CCL2 in plasma and cerebrospinal fluid, suggesting that researchers could infer the degree of CNS inflammation by testing CCL2 levels in peripheral blood. Overall, these findings provide insight into neuroinflammation and signaling associated with HIV persistence in the CNS. Supported by ORIP (P51OD011104, P51OD011133), NIMH, and NINDS.
A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies
McCann et al., Journal of Experimental Medicine. 2021.
https://doi.org/10.1084/jem.20201908
HIV-specific CD8+ T cells partially control viral replication but rarely provide lasting protection due to immune escape. Investigators showed that engrafting NSG mice with memory CD4+ T cells from HIV+ donors enables evaluation of autologous T cell responses while avoiding graft-versus-host disease. Treating HIV-infected mice with clinically relevant T cell products reduced viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an Interleukin-15 superagonist but was ultimately limited by the pervasive selection of escape mutations, recapitulating human patterns. This “participant-derived xenograft” model provides a powerful tool for developing T cell-based therapies for HIV. Supported by ORIP (R01OD011095), NIAID, NIDA, NIMH, NINDS, and NCATS.