Selected Grantee Publications
- Clear All
- 1 result found
- nigms
- R24
- Preservation
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.