Selected Grantee Publications
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Isolation of Human Antibodies Against Influenza B Neuraminidase and Mechanisms of Protection at the Airway Interface
Wolters et al., Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/38823390
In this report, researchers describe the isolation of human monoclonal antibodies (mAbs) that recognized the influenza B virus (IBV) neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Their work suggests that the antibodies recognized two major antigenic sites. The first group included mAb FluB-393, and the second group contained an active site mAb, FluB-400. Their findings can help inform the mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates. Supported by ORIP (K01OD036063) and NIGMS.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Antibiotic-Induced Gut Dysbiosis Elicits Gut–Brain–Axis Relevant Multi-Omic Signatures and Behavioral and Neuroendocrine Changes in a Nonhuman Primate Model
Hayer et al., Gut Microbes. 2024.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826635/
Gut microbiome–mammalian cell interactions influence the development of metabolic, immune-mediated, and neuropsychiatric disorders. Dysbiosis of the gut microbiome has been linked to behavioral characteristics in previous nonhuman primate (NHP) studies, but additional studies using NHPs are necessary to understand microbiota–gut–brain communication. The authors sought to evaluate whether antibiotic-induced gut dysbiosis can elicit changes in gut metabolites and behavior indicative of gut–brain axis disruption in common marmosets of both sexes. For the first time in an NHP model, this study demonstrated that antibiotics induce gut dysbiosis, alter gut metabolites relevant to gut–brain communication, affect neuroendocrine responses in response to stressful stimuli, and change social behavior. Supported by ORIP (K01OD030514), NCI, and NIGMS.
A Gut-Restricted Glutamate Carboxypeptidase II Inhibitor Reduces Monocytic Inflammation and Improves Preclinical Colitis
Peters et al., Science Translational Medicine. 2023.
https://www.science.org/doi/10.1126/scitranslmed.abn7491
Many patients with moderate-to-severe inflammatory bowel disease (IBD) do not have adequate disease control, and glutamate carboxypeptidase II (GCPII) offers a promising target for therapeutic development. Researchers generated a class of GCPII inhibitors. They demonstrated that the inhibitor reduced monocytic inflammation in mice and protected against the loss of barrier integrity in primary human colon epithelial air–liquid interface monolayers. Their findings suggest that local inhibition of GCPII could be applied for the development of IBD therapeutics. Supported by ORIP (K01OD030517, T32OD011089), NIGMS, and NCCIH.
Structural Insights Into the Broad Protection Against H1 Influenza Viruses by a Computationally Optimized Hemagglutinin Vaccine
Dzimianski et al., Communications Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37185989/
Influenza is an ongoing public health concern, and computationally optimized broadly reactive antigen (COBRA) hemagglutinin proteins represent a potential strategy for formulating broadly effective influenza vaccines. Researchers determined the crystal structure of COBRA P1, as well as its binding to 1F8, a broadly neutralizing antibody. This work provides valuable insights into the underlying molecular basis for the broad effectiveness of P1, and these insights can be applied to future vaccine designs. Supported by ORIP (K01OD026569), NIAID, and NIGMS.