Selected Grantee Publications
Prostatic Escherichia coli Infection Drives CCR2-Dependent Recruitment of Fibrocytes and Collagen Production
Scharpf et al., Disease Models & Mechanisms. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11789281
In men, lower urinary tract dysfunction (LUTD) is commonly linked to prostatic collagen accumulation through inflammation-mediated mechanisms. Researchers used 8- to 10-week-old male reporter mice, exposed to either sterile phosphate buffered saline (PBS) or Escherichia coli, to identify that circulating Lyz2+S100a4+Gli1+ myeloid-derived cells are recruited to the prostate to drive inflammation and collagen synthesis. Researchers also used 8- to 10-week-old male Ccr2‑/ - null and Ccr2+/- control mice, exposed to either sterile PBS or E. coli, to determine if Ccr2 is necessary for the fibrotic response to prostatic uropathogen infection. Results demonstrated that CCR2+ cells mediate the collagen abundance and fibrotic response to prostate inflammation. This study elucidates the cell types underlying prostate fibrosis and can be utilized to develop targeted therapies. Supported by ORIP (T32OD010957), NCI, NIDDK, and NIEHS.
A Comprehensive Atlas of AAV Tropism in the Mouse
Walkey et al., Molecular Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39863928
Over the past three decades, adeno-associated viruses (AAVs) have emerged as the leading viral vector for in vivo gene therapy. This study presents a comprehensive atlas of AAV tropism in male and female mice, evaluating 10 naturally occurring AAV serotypes across 22 tissues using systemic delivery. Researchers employed a fluorescent protein activation approach to visualize AAV transduction patterns and detected transduction of unexpected tissues, including in adrenal glands, testes, and ovaries. Biodistribution closely matched the fluorescent signal intensity. This publicly available data set provides valuable insights into AAV vector targeting and supports optimal serotype selection for basic research and preclinical gene therapy applications in murine models. Supported by ORIP (U42OD026645, U42OD035581, U42OD026635), NCI, NHLBI, NICHD, and NIDDK.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
The Widely Used Ucp1-Cre Transgene Elicits Complex Developmental and Metabolic Phenotypes
Halurkar et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39824816
Bacterial artificial chromosome technology is instrumental to mouse transgenics, including in studies of highly thermogenic brown adipose tissue and energy-storing white adipose tissue. Researchers discovered that male and female Ucp1-CreEvdr transgenic mice, which are commonly used to study fat tissue, may have unintended effects on metabolism and development. Findings revealed that these mice show changes in both brown and white fat function and disruptions in gene activity, suggesting broader physiological impacts than previously thought. This study emphasizes the need for careful validation of genetic tools in research to ensure accurate results, highlighting the potential concerns in using the Ucp1-CreEvdr model in metabolic and developmental studies. Supported by ORIP (R21OD034470, R21OD031907) NCATS, NIDCR, and NIDDK.
Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids
Papsdorf et al., Nature Cell Biology. 2023.
https://www.nature.com/articles/s41556-023-01136-6
Investigators studied the mechanism by which mono-unsaturated fatty acids (MUFAs) extend longevity. They found that MUFAs upregulated the number of lipid droplets in fat storage tissues of Caenorhabditis elegans, and increased lipid droplets are necessary for MUFA-induced longevity and predicted remaining lifespan. Lipidomics data revealed that MUFAs modify the ratio of membrane lipids and ether lipids, which leads to decreased lipid oxidation in middle-aged individuals. MUFAs also upregulate peroxisome number. A targeted screen revealed that induction of both lipid droplets and peroxisomes is optimal for longevity. This study opens new interventive avenues to delay aging. Supported by ORIP (S10OD025004, S10OD028536, P40OD010440), NIA, NCCIH, NIDDK, and NHGRI.
The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease
Wagner et al., Endocrinology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37882530/
Metabolic diseases are a host of complex conditions, including obesity, diabetes mellitus, and metabolic syndrome. Endocrine control systems (e.g., adrenals, thyroid, gonads) are causally linked to metabolic health outcomes. In this study, investigators determined novel metabolic and endocrine health characteristics in both sexes of six available substrains similar to the N/NIH Heterogeneous Stock (HS) rat founders. This deep-phenotyping protocol provides new insight into the exceptional potential of the HS rat population to model complex metabolic health states. The following hypothesis was tested: The genetic diversity in the HS rat founder strains represents a range of endocrine health conditions contributing to the diversity of cardiometabolic disease risks exhibited in the HS rat population. Supported by ORIP (R24OD024617), NHLBI, NIGMS and NIDDK.
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
CD8+ T Cells Control SIV Infection Using Both Cytolytic Effects and Non-Cytolytic Suppression of Virus Production
Policicchio et al., Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589330/
HIV continuously evades and subdues the host immune responses through multiple strategies, and an understanding of these strategies can help inform research efforts. Using a mathematical model, investigators assessed whether CD8+ cells from male rhesus macaques exert a cytolytic response against infected cells prior to viral production. Their goal was to elucidate the possible mode of action of CD8+ cells on simian immunodeficiency virus (SIV)–infected cells. Models that included non‑cytolytic reduction of viral production best explained the viral profiles across all macaques, but some of the best models also included cytolytic mechanisms. These results suggest that viral control is best explained by the combination of cytolytic and non-cytolytic effects. Supported by ORIP (P40OD028116, R01OD011095), NIAID, NIDDK, and NHLBI.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS