Selected Grantee Publications
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
Deep Learning Is Widely Applicable to Phenotyping Embryonic Development and Disease
Naert et al., Development. 2021.
https://pubmed.ncbi.nlm.nih.gov/34739029/
Genome editing simplifies the generation of new animal models for congenital disorders. The authors illustrate how deep learning (U-Net) automates segmentation tasks in various imaging modalities. They demonstrate this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). They provide a library of pre-trained networks and detailed instructions for applying deep learning to datasets and demonstrate the versatility, precision, and scalability of deep neural network phenotyping on embryonic disease models. Supported by ORIP (P40OD010997, R24OD030008), NICHD, NIDDK, and NIMH.
Western-Style Diet Consumption Impairs Maternal Insulin Sensitivity and Glucose Metabolism During Pregnancy in a Japanese Macaque Model
Elsakr et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-92464-w
Using a Japanese macaque model, investigators assessed the metabolic effects of obesity and a calorically dense, Western-style diet (WSD; 36.3% fat), either alone or together, on maternal glucose tolerance and insulin levels in dams during pregnancy (n = 95 females followed over multiple pregnancies [n = 273]). With prolonged WSD feeding, multiple diet switches, and/or increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. The results suggest that prolonged or recurrent calorically dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. Supported by ORIP (P51OD011092), NIDDK and NIMH.
Creb5 Establishes the Competence for Prg4 Expression in Articular Cartilage
Zhang et al., Communications Biology. 2021.
https://doi.org/10.1038/s42003-021-01857-0
Cells comprising the superficial zone of articular cartilage express lubricin, encoded by the Prg4 gene, that lubricates joints. Researchers identified Creb5 as a transcription factor that is required for TGF-β and EGFR signaling to induce Prg4 expression. Forced expression of Creb5 in deep-zone chondrocytes of articular cartilage confers competence for TGF-β and EGFR signals to induce Prg4 expression. The researchers showed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, which work together with a more distal regulatory element to drive induction of Prg4 by TGF-β. Thus, Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage. Supported by ORIP (U42OD11158), NIAMS, and NIDDK.
Natural Killer Cells Activated Through NKG2D Mediate Lung Ischemia-Reperfusion Injury
Calabrese et al., Journal of Clinical Investigation. 2021.
https://www.jci.org/articles/view/137047
Pulmonary ischemia-reperfusion injury (IRI) causes early mortality and has no effective therapies. While natural killer (NK) cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, investigators demonstrated that NK cells were increased in frequency and cytotoxicity in 2 different IRI mouse models. They showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell–deficient mouse strain but restored with adoptive transfer of NK cells. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively-collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury. Supported by ORIP (S10OD026940), NHLBI, and NIDDK.
Lipocalin-2 Is an Anorexigenic Signal in Primates
Petropoulou et al., eLife. 2020.
https://doi.org/10.7554/eLife.58949
The hormone lipocalin-2 (LCN2) suppresses food intake in mice. Researchers demonstrated that LCN2 increases after a meal and reduces hunger in people with normal weight or overweight, but not in obese individuals. The researchers also showed that LCN2 crosses the blood-brain barrier and binds to the hypothalamus in vervet monkeys. LCN2 was found to bind to the hypothalamus in human, baboon, and rhesus macaque brain sections. When injected into vervets, LCN2 suppressed food intake and lowered body weight without toxic effects in short-term experiments. These findings lay the groundwork to investigate whether LCN2 might be a useful treatment for obesity. Supported by ORIP (P40OD010965), NCATS, NIDDK, NIA, and NHLBI.
Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development
Chaturantabut et al., Hepatology. 2020.
https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.31184
During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver. The developmental cues controlling the differentiation of committed progenitors into these cell types are not completely understood. These authors report an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. The studies identify17β-estradiol (E2), nuclear estrogen receptor 2b (esr2b), and downstream bone morphogenetic protein (BMP) activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy. Supported by ORIP (R24OD017870) and NIDDK.
Fructose Stimulated De Novo Lipogenesis Is Promoted by Inflammation
Jelena et al., Nature Metabolism. 2020.
https://pubmed.ncbi.nlm.nih.gov/32839596
Non-alcoholic fatty liver disease (NAFD) affects 30% of adult Americans. While NAFD starts as simple steatosis with little liver damage, its severe manifestation as non-alcoholic steatohepatitis (NASH) is a leading cause of liver failure, cirrhosis, and cancer. Fructose consumption is proposed to increase the risk of hepatosteatosis and NASH. Excessive intake of fructose causes barrier deterioration and low-grade endotoxemia. Using a mouse model, the study examined the mechanism of how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis. The results demonstrated that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signaling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to fatty acid in both mouse and human hepatocytes. The finding may be of relevance to several common liver diseases and metabolic disorders. Supported by ORIP (S10OD020025), NCI, NIEHS, NIDDK, NIAID, and NIAAA.
Fluorescence-Based Sorting of Caenorhabditis elegans via Acoustofluidics
Zhang et al., Lab on a Chip. 2020.
The authors present an integrated acoustofluidic chip capable of identifying worms of interest based on expression of a fluorescent protein in a continuous flow and then separate them in a high-throughput manner. Utilizing planar fiber optics, their acoustofluidic device requires no temporary immobilization of worms for interrogation/detection, thereby improving the throughput. The device can sort worms of different developmental stages (L3 and L4 stage worms) at high throughput and accuracy. In their acoustofluidic chip, the time to complete the detection and sorting of one worm is only 50 ms, which outperforms nearly all existing microfluidics-based worm sorting devices. Supported by ORIP (R43OD024963), NIEHS, and NIDDK.