Selected Grantee Publications
- Clear All
- 8 results found
- niddk
- CRISPR
- Preservation
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.
Elevated Transferrin Receptor Impairs T Cell Metabolism and Function in Systemic Lupus Erythematosus
Voss et al., Science Immunol. 2023.
https://www.science.org/doi/10.1126/sciimmunol.abq0178
Systemic lupus erythematosus (SLE) is an autoimmune disease in which dysfunctional T cells exhibit abnormalities in metabolism. Investigators performed a CRISPR screen to examine mechanisms associated with the role of excess iron in dysfunctional T cells. The transferrin receptor (CD71) was identified as differentially critical for Type 1 T helper cells and inhibitory for induced regulatory T cells. Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Disease severity correlated with CD71 expression in cells from male and female patients with SLE, and blocking CD71 in vitro enhanced interleukin 10 secretion. These findings suggest that T cell iron uptake via CD71 contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology. Supported by ORIP (S10OD030264), NIAID, NCI, and NIDDK.
Orthotopic Transplantation of the Full-Length Porcine Intestine After Normothermic Machine Perfusion
Abraham et al., Transplantation Direct. 2022.
https://www.doi.org/10.1097/TXD.0000000000001390
Successful intestinal transplantation currently is hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation could expand transplantable graft numbers and enhance post-transplant outcomes. Superior transplant outcomes recently have been demonstrated in clinical trials using machine perfusion to preserve the liver. The investigators report the development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model. Supported by ORIP (K01OD019911), NIAID, and NIDDK.
Rapid Joule Heating Improves Vitrification Based Cryopreservation
Zhan et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33546-9
Cryopreservation by vitrification is an effective approach for long-term preservation of biosystems, but effective vitrification often requires high concentrations of cryoprotective agent (CPA), which can be toxic. The investigators described a joule heating–based platform technology for rapid rewarming of biosystems, which allows the use of low concentrations of CPA. They demonstrated the success of this platform in cryopreservation of three model systems: adherent cells, Drosophila melanogaster embryos, and rat kidney slices with low CPA concentrations. This work provides a general solution to cryopreserve a broad spectrum of cells, tissues, organs, and organisms. Supported by ORIP (R21OD028758), NIDDK, NHLBI, and NIGMS.
Deep Learning Is Widely Applicable to Phenotyping Embryonic Development and Disease
Naert et al., Development. 2021.
https://pubmed.ncbi.nlm.nih.gov/34739029/
Genome editing simplifies the generation of new animal models for congenital disorders. The authors illustrate how deep learning (U-Net) automates segmentation tasks in various imaging modalities. They demonstrate this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). They provide a library of pre-trained networks and detailed instructions for applying deep learning to datasets and demonstrate the versatility, precision, and scalability of deep neural network phenotyping on embryonic disease models. Supported by ORIP (P40OD010997, R24OD030008), NICHD, NIDDK, and NIMH.