Selected Grantee Publications
- Clear All
- 5 results found
- niddk
- Vaccines/Therapeutics
- 2023
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.
CD8+ Lymphocytes Do Not Impact SIV Reservoir Establishment under ART
Statzu et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894752/
The HIV-1 latent reservoir has been shown to persist following antiretroviral therapy (ART), but the mechanisms underlying the establishment and maintenance of the reservoir are not fully understood. Using rhesus macaques of both sexes, investigators examined the effects of CD8+ T cells on formation of the latent reservoir with simian immunodeficiency virus (SIV) infection. They found that CD8+ T cell depletion resulted in slower decline of viremia but did not change the frequency of infected CD4+ T cells in the blood or lymph nodes. Additionally, the size of the persistent reservoir was unchanged. These findings suggest that the viral reservoir is established largely independent of SIV-specific cytotoxic T lymphocyte control. Supported by ORIP (P51OD011132), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.